Some inequalities for entire functions

  • N. Sushchyk Ivan Franko National University of Lviv Lviv, Ukraine
  • Dzvenyslava Lukivska The Ivan Franko National University of Lviv

Анотація

Let $\mathcal{L}_p$ be the subspace of the space $L_p(\mathbb{R})$ consisting of the restriction to the real axis of all entire functions of exponential type $\le \pi$. In this paper, for any function $f\in \mathcal{L}_p \,\,(1\le p\le \infty)$, we obtain estimates for the norm of $f$ in terms of the sequence $(f(n/2))_{n\in\mathbb{Z}},$ namely
$$
\frac12 \|f\|_{p,1}\le \|f\|_{\mathcal{L}_p}\le 2 \|f\|_{p,1},
$$
where $\|f\|_{p,1}:=\frac12(\|Jf\|_{\ell_p(\mathbb{Z})} +\|JT_{1/2}f\|_{\ell_p(\mathbb{Z})})$. Here $J:\mathcal{L}_p\to\ell_p(\mathbb{Z})$ is the linear operator given by the formula $$ (Jf)(n):=(-1)^nf(n), \quad n\in\mathbb{Z},
$$ and $T_\tau$ is the shift by $\tau\in\mathbb{R}$ of the function $f$,
$$ (T_\tau f)(z):=f(z+\tau), \quad z\in\mathbb{C}.
$$

Біографії авторів

N. Sushchyk, Ivan Franko National University of Lviv Lviv, Ukraine

Ivan Franko National University of Lviv
Lviv, Ukraine

Dzvenyslava Lukivska, The Ivan Franko National University of Lviv

Ivan Franko National University of Lviv
Lviv, Ukraine

Посилання

B.Ya. Levin, Lectures on entire functions, Translations of Mathematical Monographs, V.150, AMS, Providence, RI, 1996.

I.S. Gradshteyn, I.M. Ryzhik, Table of integrals, series, and products, Academic Press, Editors: Daniel Zwillinger, Victor Moll, 2014. doi.org/10.1016/C2010-0-64839-5

Опубліковано
2024-09-15
Як цитувати
Sushchyk, N., & Lukivska, D. (2024). Some inequalities for entire functions. Математичні студії, 62(1), 109-112. https://doi.org/10.30970/ms.62.1.109-112
Розділ
Короткі оголошення