Some inequalities for entire functions

  • N. Sushchyk Ivan Franko National University of Lviv Lviv, Ukraine
  • D. Lukivska Ivan Franko National University of Lviv Lviv, Ukraine
Keywords: entire functions, Banach spaces

Abstract

Let $\mathcal{L}_p$ be the subspace of the space $L_p(\bR)$ consisting of the restriction to the real axis of all entire functions of exponential type $\le \pi$. In this paper, for any function $f\in \mathcal{L}_p \,\,(1\le p\le \infty)$, we obtain estimates for the norm of $f$ in terms of the sequence $(f(n/2))_{n\in\bZ},$ namely
$$
\frac12 \|f\|_{p,1}\le \|f\|_{\mathcal{L}_p}\le 2 \|f\|_{p,1},
$$
where $\|f\|_{p,1}:=\frac12(\|Jf\|_{\ell_p(\bZ)} +\|JT_{1/2}f\|_{\ell_p(\bZ)})$. Here $J:\mathcal{L}_p\to\ell_p(\bZ)$ is the linear operator given by the formula $$ (Jf)(n):=(-1)^nf(n), \quad n\in\bZ,
$$ and $T_\tau$ is the shift by $\tau\in\bR$ of the function $f$,
$$ (T_\tau f)(z):=f(z+\tau), \quad z\in\bC.
$$

Author Biographies

N. Sushchyk, Ivan Franko National University of Lviv Lviv, Ukraine

Ivan Franko National University of Lviv
Lviv, Ukraine

D. Lukivska, Ivan Franko National University of Lviv Lviv, Ukraine

Ivan Franko National University of Lviv
Lviv, Ukraine

References

B.Ya. Levin, Lectures on entire functions, Translations of Mathematical Monographs, V.150, AMS, Providence, RI, 1996.

I.S. Gradshteyn, I.M. Ryzhik, Table of integrals, series, and products, Academic Press, Editors: Daniel Zwillinger, Victor Moll, 2014. doi.org/10.1016/C2010-0-64839-5

Published
2024-09-15
How to Cite
Sushchyk, N., & Lukivska, D. (2024). Some inequalities for entire functions. Matematychni Studii, 62(1), 109-112. https://doi.org/10.30970/ms.62.1.109-112
Section
Research Announcements