Note on composition of entire functions and bounded $L$-index in direction

  • A. I. Bandura Ivano-Frankivsk National Tecnical University of OIl and Gas
  • O. B. Skaskiv Ivan Franko National University of Lviv, Lviv, Ukraine
  • T. M. Salo

Анотація

We study the following question: ``Let $f\colon \mathbb{C}\to \mathbb{C}$ be an entire function of bounded $l$-index, $\Phi\colon \mathbb{C}^n\to \mathbb{C}$ an be entire function, $n\geq2,$ $l\colon \mathbb{C}\to \mathbb{R}_+$ be a continuous function. What is a positive continuous function $L\colon \mathbb{C}^n\to \mathbb{R}_+$ and a direction $\mathbf{b}\in\mathbb{C}^n\setminus\{\mathbf{0}\}$ such that the composite function $f(\Phi(z))$ has bounded $L$-index in the direction~$\mathbf{b}$?''
In the present paper, early known result on boundedness of $L$-index in direction for the composition of entire functions $f(\Phi(z))$ is modified. We replace a condition that a directional derivative of the inner function $\Phi$ in a direction $\mathbf{b}$ does not equal zero. The condition is replaced by a construction of greater function $L(z)$ for which $f(\Phi(z))$ has bounded $L$-index in a direction. We relax the condition $|\partial_{\mathbf{b}}^k\Phi(z)|\le K|\partial_{\mathbf{b}}\Phi(z)|^k$ for all $z\in\mathbb{C}^n$,
where $K\geq 1$ is a constant and ${\partial_{\mathbf{b}} F(z)}:=\sum\limits_{j=1}^{n}\!\frac{\partial F(z)}{\partial z_{j}}{b_{j}}, $ $\partial_{\mathbf{b}}^k F(z):=\partial_{\mathbf{b}}\big(\partial_{\mathbf{b}}^{k-1} F(z)\big).$ It is replaced by the condition $|\partial_{\mathbf{b}}^k\Phi(z)|\le K(l(\Phi(z)))^{1/(N(f,l)+1)}|\partial_{\mathbf{b}}\Phi(z)|^k,$ where $N(f,l)$ is the $l$-index of the function $f.$
The described result is an improvement of previous one.

Біографії авторів

A. I. Bandura, Ivano-Frankivsk National Tecnical University of OIl and Gas

Ivano-Frankivsk National Tecnical University of OIl and Gas

O. B. Skaskiv, Ivan Franko National University of Lviv, Lviv, Ukraine

Ivan Franko National University of Lviv, Lviv, Ukraine

T. M. Salo
Lviv Politechnic National University, Lviv, Ukraine    

Посилання

A.I. Bandura, O.B. Skaskiv, Entire functions of bounded L-index in direction, Mat. Stud., 27 (2007), No1, 30–52.(in Ukrainian)

Bandura, A.: Composition of entire functions and bounded L-index in direction. Mat. Stud. 47(2), 179–184 (2017). doi: 10.15330/ms.47.2.179-184

Bandura A. I., Skaskiv O. B. Boundedness of L-index for the composition of entire functions of several variables. Ukr. Math. J. 70 (10), 1538–1549 (2019). doi: 10.1007/s11253-019-01589-9

Bandura, A.I. Composition, product and sum of analytic functions of bounded L-index in direction in the unit ball, Mat. Stud. 50 (2), 115–134 (2018). doi: 10.15330/ms.50.2.115-134

Bandura, A.I., Sheremeta, M.M.: Bounded l-index and l−M-index and compositions of analytic functions. Mat. Stud. 48 (2), 180-188 (2017). doi: 10.15330/ms.48.2.180-188

Bandura A. I., Skaskiv O. B., Tsvigun V. L.: The functions of Bounded L-Index in the Collection of Variables Analytic in D × C. J. Math. Sci., 246 (2), 256–263 (2020). doi: 10.1007/s10958-020-04735-y

A. Bandura, O. Skaskiv, Entire functions of several variables of bounded index, Lviv: Publisher I. E. Chyzhykov, 2016, 128 p.

A. Bandura, O. Skaskiv, P. Filevych, Properties of entire solutions of some linear PDE’s, J. Appl. Math. Comput. Mech., 16 (2017), No2, 17–28. doi:10.17512/jamcm.2017.2.02

Bandura, A., Petrechko, N., Skaskiv, O.: Maximum modulus in a bidisc of analytic functions of bounded L-index and an analogue of Hayman’s theorem. Mat. Bohemica. 143 (4), 339–354 (2018). doi: 10.21136/MB.2017.0110-16

W.K. Hayman, Differential inequalities and local valency, Pacific J. Math., 44 (1973), No1, 117–137.

A.D. Kuzyk, M.N. Sheremeta, Entire functions of bounded l-distribution of values, Math. Notes, 39 (1986), No1, 3–8. doi:10.1007/BF01647624

B. Lepson, Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index, Proc. Sympos. Pure Math., 2 (1968), 298–307.

M.N. Sheremeta, Entire functions and Dirichlet series of bounded l-index, Russian Math. (Iz. VUZ), 36 (1992), No9, 76–82.

M. Sheremeta, Analytic functions of bounded index, Lviv: VNTL Publishers, 1999, 141 p.

Опубліковано
2021-03-04
Як цитувати
Bandura, A. I., Skaskiv, O. B., & Salo, T. M. (2021). Note on composition of entire functions and bounded $L$-index in direction. Математичні студії, 55(1), 51-56. https://doi.org/10.30970/ms.55.1.51-56
Розділ
Статті