Note on composition of entire functions and bounded $L$-index in direction
Abstract
We study the following question: ``Let $f\colon \mathbb{C}\to \mathbb{C}$ be an entire function of bounded $l$-index, $\Phi\colon \mathbb{C}^n\to \mathbb{C}$ an be entire function, $n\geq2,$ $l\colon \mathbb{C}\to \mathbb{R}_+$ be a continuous function. What is a positive continuous function $L\colon \mathbb{C}^n\to \mathbb{R}_+$ and a direction $\mathbf{b}\in\mathbb{C}^n\setminus\{\mathbf{0}\}$ such that the composite function $f(\Phi(z))$ has bounded $L$-index in the direction~$\mathbf{b}$?''
In the present paper, early known result on boundedness of $L$-index in direction for the composition of entire functions $f(\Phi(z))$ is modified. We replace a condition that a directional derivative of the inner function $\Phi$ in a direction $\mathbf{b}$ does not equal zero. The condition is replaced by a construction of greater function $L(z)$ for which $f(\Phi(z))$ has bounded $L$-index in a direction. We relax the condition $|\partial_{\mathbf{b}}^k\Phi(z)|\le K|\partial_{\mathbf{b}}\Phi(z)|^k$ for all $z\in\mathbb{C}^n$,
where $K\geq 1$ is a constant and ${\partial_{\mathbf{b}} F(z)}:=\sum\limits_{j=1}^{n}\!\frac{\partial F(z)}{\partial z_{j}}{b_{j}}, $ $\partial_{\mathbf{b}}^k F(z):=\partial_{\mathbf{b}}\big(\partial_{\mathbf{b}}^{k-1} F(z)\big).$ It is replaced by the condition $|\partial_{\mathbf{b}}^k\Phi(z)|\le K(l(\Phi(z)))^{1/(N(f,l)+1)}|\partial_{\mathbf{b}}\Phi(z)|^k,$ where $N(f,l)$ is the $l$-index of the function $f.$
The described result is an improvement of previous one.
References
A.I. Bandura, O.B. Skaskiv, Entire functions of bounded L-index in direction, Mat. Stud., 27 (2007), No1, 30–52.(in Ukrainian)
Bandura, A.: Composition of entire functions and bounded L-index in direction. Mat. Stud. 47(2), 179–184 (2017). doi: 10.15330/ms.47.2.179-184
Bandura A. I., Skaskiv O. B. Boundedness of L-index for the composition of entire functions of several variables. Ukr. Math. J. 70 (10), 1538–1549 (2019). doi: 10.1007/s11253-019-01589-9
Bandura, A.I. Composition, product and sum of analytic functions of bounded L-index in direction in the unit ball, Mat. Stud. 50 (2), 115–134 (2018). doi: 10.15330/ms.50.2.115-134
Bandura, A.I., Sheremeta, M.M.: Bounded l-index and l−M-index and compositions of analytic functions. Mat. Stud. 48 (2), 180-188 (2017). doi: 10.15330/ms.48.2.180-188
Bandura A. I., Skaskiv O. B., Tsvigun V. L.: The functions of Bounded L-Index in the Collection of Variables Analytic in D × C. J. Math. Sci., 246 (2), 256–263 (2020). doi: 10.1007/s10958-020-04735-y
A. Bandura, O. Skaskiv, Entire functions of several variables of bounded index, Lviv: Publisher I. E. Chyzhykov, 2016, 128 p.
A. Bandura, O. Skaskiv, P. Filevych, Properties of entire solutions of some linear PDE’s, J. Appl. Math. Comput. Mech., 16 (2017), No2, 17–28. doi:10.17512/jamcm.2017.2.02
Bandura, A., Petrechko, N., Skaskiv, O.: Maximum modulus in a bidisc of analytic functions of bounded L-index and an analogue of Hayman’s theorem. Mat. Bohemica. 143 (4), 339–354 (2018). doi: 10.21136/MB.2017.0110-16
W.K. Hayman, Differential inequalities and local valency, Pacific J. Math., 44 (1973), No1, 117–137.
A.D. Kuzyk, M.N. Sheremeta, Entire functions of bounded l-distribution of values, Math. Notes, 39 (1986), No1, 3–8. doi:10.1007/BF01647624
B. Lepson, Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index, Proc. Sympos. Pure Math., 2 (1968), 298–307.
M.N. Sheremeta, Entire functions and Dirichlet series of bounded l-index, Russian Math. (Iz. VUZ), 36 (1992), No9, 76–82.
M. Sheremeta, Analytic functions of bounded index, Lviv: VNTL Publishers, 1999, 141 p.
Copyright (c) 2021 A. I. Bandura, T. M. Salo, O. B. Skaskiv
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.