Bernstein-type inequalities for analytic functions represented by power series

  • S. I. Fedynyak Ukrainian Catholic University, Lviv, Ukraine
  • P. V. Filevych Lviv Politechnic National University, Lviv, Ukraine
Keywords: Bernstein’s inequality, analytic function, maximum modulus, power series, maximal term, central index, convex function, Young conjugate function

Abstract

Let $R\in (0,+\infty]$ and $\mathbb{D}_R=\{z\in \mathbb{C}\colon |z|<R\}$. Denote by
$\mathcal{A}_R$ the class of all functions $f$ analytic in $\mathbb{D}_R$ such that $f(z)\not\equiv0$. For any function $f\in\mathcal{A}_R$, let $M(r,f)=\max\{|f(z)|\colon |z|=r\}$ be the maximum modulus, $K (r,f)=rM(r,f')/M(r,f)$, and $\mu(r,f)=\max\{|a_n(f)|r^n\colon n\ge 0 \}$ be the maximal term of the Maclaurin series of the function $f$, where $a_n(f)$ denotes the $n$-th coefficient of this series. Suppose that $\Phi$ is a continuous function on $[a,\ln R)$ such that for every $x\in\mathbb{R}$ we have $x\sigma-\Phi(\sigma )\to-\infty$ as $\sigma\uparrow \ln R$, and let $\widetilde{\Phi}(x)=\max\{x\sigma -\Phi(\sigma)\colon \sigma\in D_\Phi\}$ be the Young conjugate function of $\Phi$, $\varphi(x)=\widetilde{\Phi}'_+(x)$ for all $x\in\mathbb{ R}$, and $\Gamma(x)=(\widetilde{\Phi}(x)-\ln x)/x$ for all sufficiently large $x$. Put

$\displaystyle
\Delta=\varlimsup_{x\to+\infty}\frac{\ln x}{\Phi(\varphi(x))},\
t(f)=\varlimsup_{r\uparrow R}\frac{\ln\mu(r,f)}{\Phi(\ln r)},\
k(f)=\varlimsup_{r\uparrow R} \frac{K(r,f)}{\overline{\Phi}\,\!^{-1}(\ln r)},\
k_{1}(f)=\varlimsup_{r\uparrow R} \frac{K(r,f)}{\Gamma^{-1}(\ln r)},
$

where $f\in\mathcal{A}_R$. We prove the following results:

(a) for any function $f\in\mathcal{A}_{R}$ such that $t(f)\le1$, the inequality $k_{1}(f)\le 1$ holds;
(b) for an arbitrary positive sequence $(r_n)$ increasing to $R$, there exists a function $f\in\mathcal{A}_{R}$ such that $t(f)=1$ and $\varlimsup\limits_{n \to +\infty}K(r_n,f)/\Gamma^{-1}(\ln r_n)=1$;
(c) for any function $f\in\mathcal{A}_{R}$ such that $t(f)\le1$, the inequality $k(f)\le 1+\Delta$ holds;
(d) there exists a function $f\in\mathcal{A}_{R}$ such that $t(f)=1$ and $k(f)=1+\Delta$.

Author Biographies

S. I. Fedynyak, Ukrainian Catholic University, Lviv, Ukraine

Ukrainian Catholic University, Lviv, Ukraine

P. V. Filevych, Lviv Politechnic National University, Lviv, Ukraine

Lviv Politechnic National University, Lviv, Ukraine

References

S. Bernstein, Lecons sur les proprietes extremales et la meilleure approximation des fonctions analytiques dune variable reelle, Paris: Gauthier-Villars, 1926.

T. Kovari, A note on entire functions, Acta Math. Acad. Sci. Hung., 8 (1957), №1–2, 87–90. https://doi.org/10.1007/BF02025233

M.M. Sheremeta, Derivative of an entire function, Ukr. Math. J., 40 (1988), 188–192. https://doi.org/10.1007/BF01056474

M.M. Sheremeta, S.I. Fedynyak, On the derivative of a Dirichlet series, Sib. Math. J., 39 (1998), №1, 181–197. https://doi.org/10.1007/BF02732373

S.I. Fedynyak, P.V. Filevych, Growth estimates for a Dirichlet series and its derivative, Mat. Stud., 53 (2020), №1, 3–12. https://doi.org/10.30970/ms.53.1.3-12

S.I. Fedynyak, P.V. Filevych, Growth estimates for the maximal term and central exponent of the derivative of a Dirichlet series, Carpathian Math. Publ., 12 (2020), №2, 269–279. https://doi.org/10.15330/cmp.12.2.269-279

G.I. Beregova, S.I. Fedynyak, P.V. Filevych, Asymptotic estimates for analytic functions in strips and their derivatives, Mat. Stud., 57 (2022), №2, 137–146. https://doi.org/10.30970/ms.57.2.137-146

T.Ya. Hlova, P.V. Filevych, Generalized types of the growth of Dirichlet series, Carpathian Math. Publ., 7 (2015), №2, 172–187. https://doi.org/10.15330/cmp.7.2.172-187

P.V. Filevych, Asymptotic behavior of entire functions with exceptional values in the Borel relation, Ukr. Math. J., 53 (2001), №4, 595–605. https://doi.org/10.1023/A:1012378721807

P.V. Filevych, On the growth of the maximum of the modulus of an entire function on a sequence, Ukr. Math. J., 54 (2002), №8, 1386–1392. https://doi.org/10.1023/A:1023443926292

P.V. Filevych, On influence of the arguments of coefficients of a power series expansion of an entire function on the growth of the maximum of its modulus, Sib. Math. J., 44 (2003), №3, 529–538. https://doi.org/10.1023/A:1023825117420

P.V. Filevych, Wiman–Valiron type inequalities for entire and random entire functions of finite logarithmic order, Sib. Math. J., 43 (2001), №3, 579–586. https://doi.org/10.1023/A:1010435512666

T.Ya. Hlova, P.V. Filevych, The growth of analytic functions in the terms of generalized types, J. Lviv Politech. Nat. Univ., Physical and mathematical sciences, (2014), №804, 75–83. (in Ukrainian)

S.I. Fedynyak, P.V. Filevych, Distance between a maximum modulus point and zero set of an analytic function, Mat. Stud., 52 (2019), №1, 10–23. https://doi.org/10.30970/ms.52.1.10-23

P.V. Filevych, On the slow growth of power series convergent in the unit disk, Mat. Stud., 16 (2001), №2, 217–221. http://matstud.org.ua/texts/2001/16_2/217_221.pdf

A.A. Gol’dberg, I.V. Ostrovskii, Value distribution of meromorphic functions. Transl. Math. Monogr., V.236, Amer. Math. Soc., Providence, RI, 2008.

P.V. Filevych, Asymptotic estimates for entire functions of minimal growth with given zeros, Mat. Stud., 62 (2024), №1, 54–59. https://doi.org/10.30970/ms.62.1.54-59

Published
2024-12-12
How to Cite
Fedynyak, S. I., & Filevych, P. V. (2024). Bernstein-type inequalities for analytic functions represented by power series. Matematychni Studii, 62(2), 121-131. https://doi.org/10.30970/ms.62.2.121-131
Section
Articles