Asymptotic estimates for analytic functions in strips and their derivatives
Abstract
Let $-\infty\le A_0< A\le +\infty$, $\Phi$ be a continuous function on $[a,A)$ such that for every $x\in\mathbb{R}$ we have $x\sigma-\Phi(\sigma)\to-\infty$ as $\sigma\uparrow A$, $\widetilde{\Phi}(x)=\max\{x\sigma -\Phi(\sigma):\sigma\in [a,A)\}$ be the Young-conjugate function of $\Phi$, ${\Phi}_*(x)=\widetilde{\Phi}(x)/x$ for all sufficiently large $x$, and $F$ be an analytic function in the strip $\{s\in\mathbb{C}\colon A_0<\operatorname{Re}s<A\}$ such that the quantity $S(\sigma,F)=\sup\{|F(\sigma+it)|\colon t\in\mathbb{R}\}$ is finite for all $\sigma\in(A_0,A)$ and $F(s)\not\equiv0$. It is proved that if
\smallskip\centerline{$\ln S(\sigma,F)\le(1+o(1)\Phi(\sigma)$ as $\sigma\uparrow A$,}
\smallskip\noi then
\centerline{$\displaystyle
\varlimsup_{\sigma\uparrow A}\frac{S(\sigma,F')}{S(\sigma,F){\Phi}_*^{-1}(\sigma)}\le c_0,
$}
\smallskip\noi
where $c_0<1,1276$ is an absolute constant. From previously obtained results it follows that $c_0$ cannot be replaced by a constant less than $1$.
References
S. Bernstein, Le¸cons sur les Propri´et´es Extr´emales et la Meilleure Approximation des Fonctions Analytiques
d’une Variable R´eelle, Paris: Gauthier-Villars, 1926.
T. Kovari, A note on entire functions, Acta Math. Acad. Sci. Hung. 8 (1957), №1–2, 87–90. doi: 10.1007/BF02025233
M.N. Sheremeta, Derivative of an entire function, Ukr. Math. J., 40 (1988), 188–192. doi: 10.1007/BF01056474
M.N. Sheremeta, S.I. Fedynyak, On the derivative of a Dirichlet series, Sib. Math. J., 39 (1998), №1, 181–197. doi: 10.1007/BF02732373
S.I. Fedynyak, P.V. Filevych, Growth estimates for a Dirichlet series and its derivative, Mat. Stud., 53 (2020), №1, 3–12. doi: 10.30970/ms.53.1.3-12
S.I. Fedynyak, P.V. Filevych, Growth estimates for the maximal term and central exponent of the derivative of a Dirichlet series, Carpathian Math. Publ., 12 (2020), №2, 269–279. doi: 10.15330/cmp.12.2.269-279
T.Ya. Hlova, P.V. Filevych, Generalized types of the growth of Dirichlet series, Carpathian Math. Publ., 7 (2015), №2, 172–187. doi: 10.15330/cmp.7.2.172-187
P.V. Filevych, Wiman–Valiron type inequalities for entire and random entire functions of finite logarithmic order, Sib. Math. J., 43 (2001), №3, 579–586. doi: 10.1023/A:1010435512666
P.V. Filevych, On influence of the arguments of coefficients of a power series expansion of an entire function on the growth of the maximum of its modulus, Sib. Math. J., 44 (2003), №3, 529–538. doi: 10.1023/A:1023825117420
T.Ya. Hlova, P.V. Filevych, The growth of analytic functions in the terms of generalized types, J. Lviv Politech. Nat. Univ., Physical and mathematical sciences, (2014), №804, 75–83. (in Ukrainian)
O.V. Shapovalovs’kyi, A remark on the derivative of entire Dirichlet series, Mat. Stud., 19 (2003), №1, 42–44.
G. Doetsch, ¨ Uber die obere Grenze des absoluten Betrages einer analytischen Funktion auf Geraden, Math. Z., 8 (1920), №3-4, 237–240. doi: 10.1007/BF01206529
S.I. Fedynyak, P.V. Filevych, Distance between a maximum modulus point and zero set of an analytic function, Mat. Stud., 52 (2019), №1, 10–23. doi: 10.30970/ms.52.1.10-23
Copyright (c) 2022 P. V. Filevych, G. I. Beregova, S. I. Fedynyak
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.