On some properties of the maximal term of series in systems of functions
Abstract
For an entire transcendental function $f$ and a sequence $(\lambda_n)$ of positive numbers increa\-sing to $+\infty$ a series $A(z)=\sum_{n=1}^{\infty}a_nf(\lambda_n z)$ in the system $\{f(\lambda_nz)\}$ is said to be regularly convergent in ${\mathbb C}$ if $\mathfrak{M}(r,A)=\sum_{n=1}^{\infty} |a_n|M_f(r\lambda_n)<+\infty$ for all $r\in (0,+\infty)$, where $ M_f(r)=\max\{|f(z)|\colon |z|=r\}$. Conditions are found on $(\lambda_n)$ and $f$, under which $\ln\mathfrak{M}(r,A)\sim \ln \mu(r,A)$ as $r\to+\infty$, where $\mu(r,A)= \max\{|a_n|M_f(r\lambda_n)\colon n\ge 1\}$ is the maximal term of the series. A~formula for finding the lower generalized order $$\lambda_{\alpha,\beta}[A]=\varliminf\limits_{r\to+\infty}\dfrac{\alpha(\ln \mathfrak{M}(r,A))}{\beta(r)}$$ is obtained, where the functions $\alpha$ and $\beta$ are positive, continuous and increasing to $+\infty$. The open problems are formulated.References
B.V. Vinnitskii, Representation of functions by series n=1 dn f (λn z), Ukr. Math. J., 31 (1979), No5, 198–204. https://doi.org/10.1007/BF01089018
B.V. Vinnitskii, Representation of analytic functions by series n=1 dn f (λnz), Ukr. Math. J., 31 (1979), No11, 501–506. https://doi.org/10.1007/BF01092529
B.V. Vinnitskii, Completeness of the system f (λn z), Ukr. Math. J., 36 (1984), No9, 493–495. https://doi.org/10.1007/BF01086778
B.V. Vinnitskii, Effective expansion of analytic functions in series in generalized systems of exponents, Ukr. Math. J., 41 (1989), No3, 269–273. https://doi.org/10.1007/BF01060309
O.B. Skaskiv, O.M. Trusevych, Relations of Borel type for generalizations of exponential series, Ukr. Math. J., 53, (2001), No11, 1926–1931. https://doi.org/10.1023/A:1015219417195
O.B. Skaskiv, Rate of convergence of positive series, Ukr. Math. Journ., 56 (2004), No12, 1665–1674. https://umj.imath.kiev.ua/index.php/umj/article/view/3873/4464.
O.B. Skaskiv, O.Yu. Tarnovecka, D.Yu. Zikrach, Asymptotic estimates of some positive integrals outside an exceptional sets, Internat. J. Pure and Appl. Math. (IJPAM), 118 (2018), No2, 157–164.
https://doi.org/10.12732/ijpam.v118i2.2
M.M. Sheremeta, On regularly converging series of systems of functions in a disk, Visnyk Lviv Univ. Ser. Mech.-Math., 94 (2022), 89–97.
M.M. Sheremeta, Spaces of series in system of functions, Mat. Stud., 59 (2023), No1, 46–59. https://doi.org/10.30970/ms.59.1.46-59
M.M. Sheremeta, Hadamard composition of series in systems of functions, Bukovyn. Mat. Zh., 11 (2023), No1, 39–51.
M.N. Sheremeta, Full equivalence of the logarithms of the maximum modulus and the maximal term of an entire Dirichlet series, Math. Notes, 47 (1990), No6, 608–611. https://doi.org/10.1007/BF01170894
M.N. Sheremeta, Connection between the growth of the maximum of the modulus of an entire function and the modulus of the coefficients of its power series expansion, Izv. Vyssh. Uchebn. Zaved. Matem., 2 (1967), 100–108. (in Russian)
M.M. Sheremeta, On two classes of positive functions and the belonging to them of main characteristics of entire functions, Mat. Stud., 19 (2003), No1, 75–82. http://matstud.org.ua/texts/2003/19_1/73_82.pdf
M.N. Sheremeta, Relations between the maximal term and the maximum modulus of entire Dirichlet series, Math. Notes, 51 (1992), No5, 522–526. https://doi.org/10.1007/BF01262189
P.V. Filevych, To the Sheremeta theorem concerning relations between the maximal term and the maximum modulus of entire Dirichlet series, Mat. Stud., 13 (2000), No2, 139–144.
http://matstud.org.ua/texts/2000/13_2/13_2_139-144.pdf
O.B. Skaskiv, Behavior of the maximal term of a Dirichlet series that defines an entire function, Math. Notes, 37 (1985), No1, 686–693. https://doi.org/10.1007/BF01652509
M.N. Sheremeta, Analogues of Wiman’s theorem for Dirichlet series, Math. USSR Sb., 38 (1981), No1, 95–107. https://doi.org/10.1070/SM1981v038n01ABEH001322
Copyright (c) 2024 M. M. Sheremeta, Yu. M. Gal'
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.