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Let L be a class of positive continuous increasing to +oo functions on [z, +00). We say that
leL’ifl el and l(z(1+ () ~ l(z) as ¥ — +oo for every function y(z) — 0, x — +o0,
and [ € Lo if 1 € L and [ is an RO-varying function.

Relations between the classes L and Lro are established and conditions under which the
main characteristics (In My (r), T'(r, f) etc.) of entire functions belong to the classes Lro and
L° are indicated.

M. H. Illepemera. O deyxr kKaaccar noaoHUMEAbHBT GYHKYUL U NPUHATAEHCHOCTAU K HUM
ocHosHbL Tapakmepucmuk yeantxr @ynryud // Maremaruani Crynii. — 2003. — T.19, Nel. —

C.73-82.

Mycrs L — Kaacc MOMOKATETLHEIX HETPEPHIBHBIX BO3PACTAIONINK K +00 Ha [2g, +00) QyHK-
unit. Ckaxem, urol € LY ecaim € L ul(z(1+7v(z))) ~ I(x) npu 2 — +oco aua awoboii GyHKiun
¥(x) = 0,2 = 400, ul € Lo, ecim | € L ul apagerca RO-MeHsA©OMWENCA PYyHKIHEN.

YeTaHOBIEHE! cBA3M Mex Ay Kiaaccami LY m Lpo U yKa3aHE! yCIOBHA, IPH KOTOPEIX OCHOB-
uble xapakTepucTuku (ln My (r), T'(r, f) u gp.) Heabx PpyHKIUN DpuHagIeXkaT kaaccaM Lgro
u LO.

1°. Introduction. A positive measurable function [ on [xg, +00) is said to be slowly
varying [1, p. 8] if [(Ax) ~ [(x) as © — +oo for every A € (0, +00), and is said to be
RO-varying [1, p. 86] if for every A € [1, a], 1 < a < 400, and all & > xy the inequalities
0<m < I(Aa)/l(x) < M < +o0o hold.

Let L be a class of positive continuous increasing to +oo functions on [z, +00). As in [2]
we denote by L° the subclass of functions [ € L such that I(z(1+~v(z))) ~ l(z) as * = 400
for every function v(z) — 0, © — +o0o. We say that [ € Ly if [ € L is slowly varying, and
[l € Lpo ifl € L is RO-varying.

For an entire function

o0
g anz"

f(2)

with zeros A\ € C let My(r) = max{|f(z)

H
the maximal term, v;(r) = max{n : |a,|r" = u

0
Z| = T'} and /,Lf(?") = maX{|an|rn “n Z 0} be
#(r)} be the central index,

7 .
T(r,f)= o /ln+ |f(re)|de

o
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be the Nevanlinna characteristic and

r

Ny(r) = /n(t)dlnt <n(t) == 1)

o Ap<t

be the Nevanlinna counting function of zeros (without loss of generality we assume that
ap # 0, i.e. [Ag] >0 for all &> 1).

By Borel’s theorem, In M¢(r) € Ly if and only if Inps(r) € Lg. In [3] it is proved that
T(r,f) € Ly if and only if In us(r) € Ly, necessary and sufficient condition on coefficients
is indicated in order that Ingus(r) € Ls, a condition on zeros is indicated in order that
N(r, f) € L, and a problem of slow increase of v¢(r) is formulated. The problem is solved
in [4], where a criterion of slow increase of the central index is obtained in terms of coefficients.

Here we investigate conditions under which the main characteristics of entire functions
belong to the classes Lpo and L°.

2°. Relations between classes Lo and L°. The following theorem was announced
in [5].

Theorem 1. L° C Lo, L° # Lro and every function o € Lro can be represented in the
form a(z) = '@ B(x), where 3 € L° and the function n is continuous and bounded on

[0, +00).
Proof. We suppose that a € L? and we will show that for every A € [1, +00)

()2 T 2D

v—too 1)

< 400

Since the function « is increasing, it is sufficient to prove that ¢(2) < +00. We suppose, on

the contrary, that ¢(2) = 400, i. e. there exists an increasing to 400 sequence () such

that
a(2xy)

a(zy)

We may assume that 2z, < 2541 (k> 1) and $/w(xg) — +o00 as k — 0.

= w(xy) = +o0, k — oo.

We divide the interval [z, 2x1] into k equal parts by the points J}Ej) = l’k—I-%l'k, 0<y<k.
Then there exists 75, 0 < 7, < k — 1, such that « <:1;§fk+1)> e <:1;§jk)> > {/w(xy), because if
a <:1:§j+1)> e <:1;§j)> < JJwlag) for all j, 0 < j <k —1, then

F)

o2z, o :chg o :1;21) . k
olon) = ST = iy Sty < (Vo) = et
Thus,
o) <:1;§fk+1)> e <:1;§jk)> — 400, k — oo,
and

LR T b7
:chk) B 1+ jx/k B E+ gk

=1, k— .
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Hence it follows that o ¢ L°. Therefore, ¢(A) < +oo for every A € [1,+00), and o € Lpo.
The inclusion L° C Lgo is proved.
We show that L0 # Lgo. Put xg =1, ap = 22k, tr=x,—1for k>1and

Lk T = T,
2F 41, x =1,
z, 0<x<1,
afx) o) + a(xg) — a(ty) (r —th), <<,
Ty — g
a(zy) + a(t:l) - jixk)(“' —ay), <& <ty
+1

It is clear that « € L, xx/t;, — 1 and a(zg)/a(ty) — 2 as k — oo, that is a ¢ L°.
We fix A € (1,400) and suppose that z;, < @ < x441. Then Az € [Axg, Awgyq). Since
Aljy1/Than = A2 0(k — o0), for all & > ko(A) we have Aax € [xy, T42) and,
therefore,

a(Ar)
o)
that is a € Lgo and L° # Lgo.

It is known [1, p. 86-87] that every RO-varying function « has a representation

a(Try2) Qk+3 _y

alwy) 281 ’

<

Hence it follows that every function a € Lgo (thus, every function o € L°), in view of its
increase, has representation (1), where the function 7 is continuous and bounded on [a, +00),
and the function ¢ is positive, continuous and bounded on [a, +0o0). Therefore, in order to
prove the last statement of Theorem 1 we should show that

xr

B(x) = exp /@dt c L’

a

Let § > 0. Since the function ¢ is positive, continuous and bounded on [a, +o0), we have
B(x) T +oo (¥ — 400) and, for some positive constant K,

(146)=
[
= exp / #dt <exp{KIn(14+4§)}—1, ¢—0.

xr

B((1 + 8)a)
e
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Therefore, the validity of the last statement of Theorem 1 follows from the following proposi-

tion: if 3 € L and B(6) = 1_1>—1_r|_n %
and sufficient that B(§) — 1 (5 — —+0).

Let us prove the proposition. Suppose that 5 € L? and B(d) 4 1(6 — +0). Since the
function B(d) is nondecreasing, there exists limsjo B(d) = b* > 1, that is B(J) > b* > 1. We
choose an arbitrary sequence (4,) | 0. For every §, there exists a sequence (x, ) such that

Tk T Hoo(k— o0) and B((1 4 6p)xnk) > bB(xnk), | < b < b*. We put

, 8> 0, then in order that 8 € L°, it is necessary

Ty =211, Tp=min{a,k: Tup > Tpo1, k> n—1}
and construct a function y(x) — 0(@ — +00) such that y(z,) = §,,. Then

B+ y(@n))en) = B((1 + 6n)xn) 2 bB(wn).

In view of definition of L, this is impossible.
On the contrary, let B(§) — 1(§ | 0) and 8 ¢ L° Then there exist a function
y(z) = 0(x — +00) and a sequence (x) T +00 (k — o0) such that

By A ()

k—oc0 ’y(xk)

=a# 1.

Clearly, a < 1 provided v(x;) < 0 and a > 1 provided v(x) > 0. We examine, for example,
the second case. Let § > 0 be an arbitrary number. Then v(xx) < 6 (k > ko) and

— B+ 8)r) o L+ B+ y(@r))er)

> lim > lim ,
that is B(d) > a and limgyo B(4) > 1, which is impossible.
The proposition and Theorem 1 are proved. O

We note that if @ € Lro then (1) implies that In a(z) = O(In z), 2 — +o0.

The main growth characteristics of entire functions are logarithmically convex functions
and those of entire Dirichlet series are convex functions. Therefore, the following theorem is
useful.

Theorem 2. If a function o € L is logarithmically convex, that is
[ ()
a(x) = Tdt +C, v(t) 4ot = +o00), C = const,
1
then the following are equivalent: 1) o € L°, 2) a € Lo and 3) v(z)/a(z) = O(1) (v —
+00).

If a € L is convex, that is

xr

a(x) = /I/(t)dt +C, v(t) 4o (t — 4+o0), C = const,

1

then the following are equivalent: 1) a € L° 2) a € Lpo and 3) zv(z)/a(z) = O(1)
(x — +00).
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Proof. Suppose that a function o € Lpp is logarithmically convex. Then
I <a2z)/a(z) <M < 40

and
2x

v(z)ln 2 < /@dt = o(2z) — ofx),

whence

v(e) _ 1 <oz(2:1;)_1> _ Mot

a(z) ~ In2 \ a(z) In2 °
Therefore, for an arbitrary positive function y(x) — 0(x — 400) we have
o(14v(z))

(et @) —ate) = [ A< uelt 42+ 9(0) <
M—1 l’
In 2

< a(z(l +4(2)))y(2) = ola(z(l +7(2))), @ = +oo,

that is a(z(14+7(z)))/a(z) = 1 (x — +00), and thus, a € L°. In view of the first statement
of Theorem 1 o € L° if and only if o € Lro. Simultaneously we can prove that if & € Lgo
then v(z) = O(a(z)) (z = +o0), and if v(z) = O(a(z)) (x — +o0), then o € L° C Lgo.
The first part of Theorem 2 is proved. The proof of the second part is analogous. O

We remark that if a function v(x) is nondecreasing and RO-varying then the function
a(z) = [ v(t)ttdt + C belongs to Lro, because from the inequality

I <v(x)/v(z) <M < 4o
we obtain the inequalities
I <alAz)/alz) <M +o(l), = — +oo.

However, there exists a nondecreasing function v(x) which is not RO-varying and o € Lpo.
Indeed, let z), = 22k, v(z) =1on[l, 2x1), v(2x1) = e, v(2xy) = V(221 ) In 24—y (k > 2) and
v(x) = v(2x) on [2ak, 2¢541). Then v(ay)/v(2xy) = v(2u4-1)/v(22) — 0 (k — o0), that is
v is not an RO-varying function. At the same time, since v(x) = v(2z;) and a(x) > o(2zy)
for all @ € [2xy, 20441), we have v(z)/a(x) < v(2x))/a(22), and in order to prove that «
belongs to Lro it suffices to show that v(2xy)/a(2x;) = O(1) (k — o0). The latter follows
from the inequality

21’k
t
a(2xy) > / th =v(2xp—1)(In 2 — In @4—1) = v(22p_1) In 21 = v(22y).
2z 1
In the case when a(x) = flx v(t)dt + C' we have a similar situation.

If a function a € L is logarithmically convex and [ € Ly;, then [6] o € Lg; provided a < [
(iie. 0 < A< a(x)/l(z) < B < +oo, x > x0) or provided I(z*) = O(l(z)) (z — +0o0), and
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w(a) < alz)/l(z) <Inx, 2 > xg, where w(a) is an arbitrary positive function, w(x) — 400
(x — +00).

For the class Lro we have oo € Lo provided a € L and a < [ € Lo, because, for some
positive constants A and B,

Al(\z)

A a(Ar) - El()\x)
B l(x)

alz) = A l(x)”

<

If o € L is logarithmically convex and a < [ € Lgo then by Theorem 2 a € L°. For the
logarithmically convex functions the following result is true.

Theorem 3. Let a function [ € L° be such that {(2*) = O(I(x)), x — +oo, and a function
a € L be logarithmically convex. If 0 < A < afx)/l(x) < Bln x, B < 400 for > x¢ then
ae L

Proof. By Theorem 2 it is sufficient to prove that o € Lrp. From the logarithmic convexity

of o we obtain

22

a(z?) > /@dt > v(z)n x,

xr

that is v(z) < a(z?)/In x. Therefore, using the relation {(2z) < {(2?) < Kl(x), v > o, we
have

2z 2z

a(22) — a(z) = /ﬂdt < / ) 1 < a4 In (1 + fl—2> <

t tin t nax

xr xr

In 2 BK?In 2
< Bl(42*)In (42%)In (1 + 1n_> < BK*l(2)3In 2 < 3%@(:1;),

nzx
i. e. a € Lro and Theorem 3 is proved. ]

3°. Entire functions. Let f be an entire function. From belonging of one of the
functions In My (r) or In ps(r) to Lro (in view of logarithmic convexity of this functions, it
means belonging to L) it follows that f has a finite order and by Borel’s theorem In M(r) ~
~1In ps(r) (r = 400). Therefore, In M;(r) € Lro (€ L°) if and only if In ps(r) € Lgo.
From the known inequalities [7, p. 54]

T(r.J) < In* My(r) < 2

TR, f), 0<r<R<+4o0,

—r
we obtain the inequalities T'(r, f) < Int M;(r) < 3T(2r, f), whence

In Ms(2r) _ 3T(4r, f) T2r,f) _ 3ln M(2r)
YS90 ST P ST S M)

ie. T(r, f) € L° if and only if In M;(r) € L°.
Thus, as in [3], the investigation reduces to the study of belonging of the function In 1 4(r)

to LY. Since .

) =t g+ [ 24
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by Theorem 2 In s (r) € L if and only if v¢(r) = O(In ps(r)) as r — +oo.

Let f°(z) = > . ,a0z" be a Newton majorant of the entire function f, r) = a2/ad,,
and (n, —In a)) ) be the peaks of Newton’s diagram. Then a; = l|a,,|, vi(r) = vp(r),
pg(r) = ppo(r), ry T 4oo(k = o0), and if v < r <) then vp(r) = ng and ppo(r) =
a, ™. Hence we easily obtain that vy(r) = O(In uys(r)) (r — +oo), if and only if ny =

O(ln pig(r) 1)) (k = oo). The latter is equivalent to the condition

0 lnag
Inr, +—=>h>0, k>1.

But
_ 0
In TO _ In ank—l In ank _ In |ank—1| —In |ank|
N — Nk N — Nk

and, therefore, the following result is proved.

Theorem 4. For each entire function f the following statements are equivalent:
1) T(r, f) e L°,
2) In My(r) € L°,
3) In pys(r) € L° and

<ln lapn, | —1In Jan,| 1

4) lim — —1n
n—00 N — Nk ng |ank|
of a Newton majorant of f.

) > 0, where n, are the abcissas of the peaks

Let o € L be such that za(x) is a convex function and B, be the class of entire transcen-
dental functions f(z) = >~ a,z" such that In |a,| < —na(n), n > ng. In [3] it is proved
that in order that In M(r) € L for each f € B, it is necessary and sufficient that

i )

z—+00 &€

> 0. (2)

Since Ly C L°, we have In M;(r) € L° for each f € B, provided (2) holds.
We will show that if (2) does not hold, then there exists a function f € B, such that
In M;(r) ¢ L°. Having this in mind, we consider an entire function

o0

f(z) = ) exp{—nia(n)}=", (3)

k=1

where (ny) is an arbitrary increasing sequence of positive integers. Since xa(x) is a convex
function, function (3) coincides with its Newton majorant, and (nj) coincides with the
abscissas of the peaks of Newton’s diagram. Therefore, by Theorem 4 In M;(r) € L° if and

only if
lim (nkoz(nk) — Np_go(Ng—1) _ oz(nk)> -0,
n—o0o nNEg —Ng—1
that is
ng

———(a(ng1) —a(ng)) > h >0, k>1.
Ng41 — Nk
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If condition (2) does not holds then as in [3] we can choose a sequence (ny) such that

ol —alne) 0,k oo ()

Therefore, for such function (3) we have In M,(r) & L°.

In [3] it is showed that the condition lim,_ . a(x)/In & = 400 is necessary and sufficient
for existence of a function f of form (3) such that In f(r) € L,;. Here we show that in order
that among the function of form (3) there exists one such that In f(r) € L°, it is necessary
and sufficient that Tim,_, . a(z)/In @ > 0.

Indeed, we suppose, on the contrary, that In f(r) ¢ L° for each function (3), i.e. for every
increasing sequence (ng) of positive integers (4) holds. In particular, for
ny = k we have k(a(k + 1) — a(k)) — 0, k — oo, whence we easily obtain the relation
a(x) = o(ln x), + — 400, which is impossible. On the other hand, if a(z) = o(In z),
r — 4oo, then by Hadamard’s theorem each function (3) has infinite order and, thus,

f(r) & L°.

As remarked above, for entire functions of finite order In My(r) ~ In pe(r) as
r — +oo. This relation can be refined if In p¢(r) € Lro.

Theorem 5. IfIn p14(r) € Lro then
My(r) = O(pys(r)In pg(r)), r— +oo, (5)
and in (5) O cannot be replaced by o.

Proof. Since
Janl(2r)" < gug(2r) = |y, o |27 PG < 2210 (),

by the condition In ps(r) € Lro we have

Me(r) < Y aglr™+ D anl" <

n<vy(2r) n>vg(2r)
< g (ryvp(2r) 4 pg(r) Y 27807 = () (Vf(QT) + 22_”> =
n>vy(2r) n=0

— O(yus(r) In 1(2)) = O(ps (1) In g (1)), 1+ — +oo.

Relation (5) is proved.

To prove the second part of Theorem 5 we put ng = 22,71, = €™, an, = 1,
ank — Hf;é T.j_(nj-l-l_n]) (k Z 1) a,nd a, = ankrkk n fOI’ ng < n< nk+1 Then an_l_l/an =

Iry = 0(k — oo0) for np < n < ngyr — 1, whence it follows that the power series
with such coefficients represents an entire function f. We easily see that vs(r) = ngg1,
pig(r) = ap, v+ for vy < < rpgy and pgp(ry) = ap,r™. Hence, first it follows that for
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L S r < T+

Inpg(r)  Inan,, +ngplnr < In an, , + npgrIn g

ve(r) Nkt - Nt
k

1
= o (nk_H In r, — ;(nﬂ_l —n;)In m) =

1
= n:(lnr;, —Inr,_y)+neln rg | >

Mt (; ]( J J 1) 0 0)
> ni(In r —In re_y) _ (1 +o(1))ngIn ryg C14o(l), koo,

NE4+1 NEt1

that is by Theorem 2 In p¢(r) € Lro.

Second,
ng41—1 ng41—1
My(ry) > Z apry = Z A,y =
n=ng n=ng
= (nrpr = n)pis(re) = (L4 o(1)) g g (re) =
= (L +o(1)pg(re)nIn ri = (14 o(1))ps(ri)(ne In v +1nan, ) =
= (L +o(1)ps(re)In pus(re), &k — oo,
that is in (5) we cannot replace O by o. The proof of Theorem 5 is complete. 0

Finally, we consider the Nevanlinna counting function. Let (ny) be an increasing sequence
of positive integers such that |A,, | < [Ay 41| = -+ = [An, | < |Anpy 41 We consider an
entire function f*(z) =ao+ >, _, ([Tiz; 1/|Ax]) 2™ It is known (see, for example, [3]), that
Ny(r) = In py«(r). Therefore, applying Theorem 4 to f*, we obtain that N;(r) € LY if and
only if

In |)\nk| -

ng <

1 &
I\l =h>0, k>1 (6)
71=1

By Theorem 4 the functions T'(r, f),In M;(r) and In u;(r) belong or do not belong to L°
simultaneously. N;(r) stands outside this chain. For example, for the entire function f(z) =
¢ sin z we have Ny(r) € L and In M;(r) ¢ L°. On the other hand, if a sequence (\) is

such that > (1/]Ax|) < 400 and condition (6) is not valid then for the entire function f(z) =
7=1

= ¢” 10_0[ (1 — ;) we have N;(r) & L° and In M,(r) € L°.
k=1 k
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