Some inequalities for entire functions
Abstract
Let $\mathcal{L}_p$ be the subspace of the space $L_p(\mathbb{R})$ consisting of the restriction to the real axis of all entire functions of exponential type $\le \pi$. In this paper, for any function $f\in \mathcal{L}_p \,\,(1\le p\le \infty)$, we obtain estimates for the norm of $f$ in terms of the sequence $(f(n/2))_{n\in\mathbb{Z}},$ namely
$$
\frac12 \|f\|_{p,1}\le \|f\|_{\mathcal{L}_p}\le 2 \|f\|_{p,1},
$$
where $\|f\|_{p,1}:=\frac12(\|Jf\|_{\ell_p(\mathbb{Z})} +\|JT_{1/2}f\|_{\ell_p(\mathbb{Z})})$. Here $J:\mathcal{L}_p\to\ell_p(\mathbb{Z})$ is the linear operator given by the formula $$ (Jf)(n):=(-1)^nf(n), \quad n\in\mathbb{Z},
$$ and $T_\tau$ is the shift by $\tau\in\mathbb{R}$ of the function $f$,
$$ (T_\tau f)(z):=f(z+\tau), \quad z\in\mathbb{C}.
$$
References
B.Ya. Levin, Lectures on entire functions, Translations of Mathematical Monographs, V.150, AMS, Providence, RI, 1996.
I.S. Gradshteyn, I.M. Ryzhik, Table of integrals, series, and products, Academic Press, Editors: Daniel Zwillinger, Victor Moll, 2014. doi.org/10.1016/C2010-0-64839-5
Copyright (c) 2024 D. Lukivska, N. Sushchyk
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.