Asymptotic estimates for analytic functions in strips and their derivatives
Abstract
Let −∞≤A0<A≤+∞, Φ be a continuous function on [a,A) such that for every x∈R we have xσ−Φ(σ)→−∞ as σ↑A, ˜Φ(x)=max be the Young-conjugate function of \Phi, {\Phi}_*(x)=\widetilde{\Phi}(x)/x for all sufficiently large x, and F be an analytic function in the strip \{s\in\mathbb{C}\colon A_0<\operatorname{Re}s<A\} such that the quantity S(\sigma,F)=\sup\{|F(\sigma+it)|\colon t\in\mathbb{R}\} is finite for all \sigma\in(A_0,A) and F(s)\not\equiv0. It is proved that if
\smallskip\centerline{\ln S(\sigma,F)\le(1+o(1)\Phi(\sigma) as \sigma\uparrow A,}
\smallskip\noi then
\centerline{\displaystyle \varlimsup_{\sigma\uparrow A}\frac{S(\sigma,F')}{S(\sigma,F){\Phi}_*^{-1}(\sigma)}\le c_0, }
\smallskip\noi
where c_0<1,1276 is an absolute constant. From previously obtained results it follows that c_0 cannot be replaced by a constant less than 1.
References
S. Bernstein, Le¸cons sur les Propri´et´es Extr´emales et la Meilleure Approximation des Fonctions Analytiques
d’une Variable R´eelle, Paris: Gauthier-Villars, 1926.
T. Kovari, A note on entire functions, Acta Math. Acad. Sci. Hung. 8 (1957), №1–2, 87–90. doi: 10.1007/BF02025233
M.N. Sheremeta, Derivative of an entire function, Ukr. Math. J., 40 (1988), 188–192. doi: 10.1007/BF01056474
M.N. Sheremeta, S.I. Fedynyak, On the derivative of a Dirichlet series, Sib. Math. J., 39 (1998), №1, 181–197. doi: 10.1007/BF02732373
S.I. Fedynyak, P.V. Filevych, Growth estimates for a Dirichlet series and its derivative, Mat. Stud., 53 (2020), №1, 3–12. doi: 10.30970/ms.53.1.3-12
S.I. Fedynyak, P.V. Filevych, Growth estimates for the maximal term and central exponent of the derivative of a Dirichlet series, Carpathian Math. Publ., 12 (2020), №2, 269–279. doi: 10.15330/cmp.12.2.269-279
T.Ya. Hlova, P.V. Filevych, Generalized types of the growth of Dirichlet series, Carpathian Math. Publ., 7 (2015), №2, 172–187. doi: 10.15330/cmp.7.2.172-187
P.V. Filevych, Wiman–Valiron type inequalities for entire and random entire functions of finite logarithmic order, Sib. Math. J., 43 (2001), №3, 579–586. doi: 10.1023/A:1010435512666
P.V. Filevych, On influence of the arguments of coefficients of a power series expansion of an entire function on the growth of the maximum of its modulus, Sib. Math. J., 44 (2003), №3, 529–538. doi: 10.1023/A:1023825117420
T.Ya. Hlova, P.V. Filevych, The growth of analytic functions in the terms of generalized types, J. Lviv Politech. Nat. Univ., Physical and mathematical sciences, (2014), №804, 75–83. (in Ukrainian)
O.V. Shapovalovs’kyi, A remark on the derivative of entire Dirichlet series, Mat. Stud., 19 (2003), №1, 42–44.
G. Doetsch, ¨ Uber die obere Grenze des absoluten Betrages einer analytischen Funktion auf Geraden, Math. Z., 8 (1920), №3-4, 237–240. doi: 10.1007/BF01206529
S.I. Fedynyak, P.V. Filevych, Distance between a maximum modulus point and zero set of an analytic function, Mat. Stud., 52 (2019), №1, 10–23. doi: 10.30970/ms.52.1.10-23
Copyright (c) 2022 P. V. Filevych, G. I. Beregova, S. I. Fedynyak

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.