Spectral properties of the Schrödinger operator with operator-valued potential
Анотація
Let $H$ be a separable Hilbert space, and let $\mathcal{H} := L_2(\mathbb{R}, H)$. In the space $\mathcal{H}$, we consider the self-adjoint Schrödinger operator of the form
$
T_q f = -f'' + qf,
$
where $q$ is a reflectionless operator-valued potential.
Let $\mathcal{P}_+$ and $\mathcal{P}_-$ be the spectral projectors of the operator $T_q$ corresponding to the positive half-line $\mathbb{R}_+$ and the negative half-line $\mathbb{R}_-$, respectively. Define $\mathcal{H}_\pm := \mathcal{P}_\pm \mathcal{H}$, and let $T_q^\pm := T_q|_{\mathcal{H}_\pm}$.
In this paper, we show that the operator $T_q$ has trivial kernel, and that the operator $T_q^+$ is unitarily equivalent to the unperturbed operator $T_0$. Next, let $B$ be an arbitrary bounded negative operator in a separable Hilbert space $H_1$ ($\dim H_1 \le \dim H$ if $\dim H < \infty$). Then we prove that there exists a reflectionless potential $q$ such that $T_q^-$ is unitarily equivalent to the operator $B$.
A key role in this work is played by solutions of the operator Riccati equation of the form
$S'(x) = K S(x) + S(x) K - 2 S(x) K S(x), \qquad x \in \mathbb{R},$
where $K \in \mathcal{B}_+(H) \setminus \{0\}$, and $S\colon \mathbb{R} \to \mathcal{B}(H)$. Here, $\mathcal{B}(H)$ is the Banach algebra of all bounded linear operators acting in $H$, and $\mathcal{B}_+(H) = \{A \in \mathcal{B}(H) \mid A \geq 0\}$.
Посилання
Ya.V. Mykytyuk, N.S. Sushchyk, An operator Riccati equation and reflectionless Schrodinger operators, Mat. Stud., 61 (2024), №2, 176–187.
Ya.V. Mykytyuk, N.S. Sushchyk, Jost solutions of Schr¨odinger operators with reflectionless operatorvalued potentials, Mat. Stud., 63 (2025), №1, 62–76.
F. Gesztesy, R. Weikard, and M. Zinchenko, On spectral theory for Schr¨odinger operators with operatorvalued potentials, J. Diff. Equat., 255 (2013), №7, 1784–1827.
V.A. Marchenko, The Cauchy problem for the KdV equation with nondecreasing initial data, in What is integrability?, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991, 273–318.
I. Hur, M. McBride, C. Remling, The Marchenko representation of reflectionless Jacobi and Schrodinger operators, Trans. AMS, 368 (2016), №2, 1251–1270.
V.A. Marchenko, Sturm–Liouville Operators and Their Applications, Naukova Dumka Publ., Kiev, 1977 (in Russian); Engl. transl.: Birkhauser Verlag, Basel, 1986.
M.G. Krein, Ju. L. Smul’jan, On linear-fractional transformations with operator coefficients, Amer. Math. Soc. Transl. (2), 103 (1974), 125–152.
I. Gohberg, S. Goldberg, M. Kaashoek, Classes of linear operators, V.2, Birkh¨auser Verlag, 1990, 465 p.
N. Dunford, J. Schwartz, Linear operators, II. Interscience, New York, 1963.
G.K. Pedersen, On the operator equation HT+TH=2K, Indiana U. Math. J., 25 (1976), №11, 1029–1033.
Авторське право (c) 2025 Ya. V. Mykytyuk, N. S. Sushchyk

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.