Uniqueness of differential polynomial of meromorphic function with its $q$-shift
Анотація
In the paper, we apply the concept of weighted sharing to study the uniqueness problems of differential polynomial of meromorphic function of zero order with its $q$-shift. The results of the paper improve and extend some recent results due to H. P. Waghamore and M. M. Manakame [Int. J. Open Problems Compt. Math., 18 (2025), 22-34]. A typical theorem obtained in the paper is as follows: Let $P$ be a polynomial, $f(z)$ be a non-constant meromorphic function of zero-order. Suppose that $q$ is a non-zero complex constant, $\eta \in \mathbb{C}$ and $n$ is an integer satisfying $n\geq m+3\tau+3\Omega +6$, where $m=\deg P$, $\tau =\sum_{j=1}^{s}\mu _{j}$ and $\Omega =\sum_{j=1}^{s}j\mu _{j}.$ If $f^{n}(z)P(f(z))\prod _{j=1}^{s}f^{(j)}(z)^{\mu _{j}}$ and $f^{n}(qz+\eta )P(f(qz+\eta ))\prod _{j=1}^{s}f^{(j)}(qz+\eta )^{\mu _{j}}$ share $(1,2)$ and $(\infty,\infty)$, then $\displaystyle f^{n}(z)P(f(z))\prod _{j=1}^{s}f^{(j)}(z)^{\mu _{j}}\equiv f^{n}(qz+\eta )P(f(qz+\eta ))\prod _{j=1}^{s}f^{(j)}(qz+\eta )^{\mu _{j}}.$ Three other similar theorems are also obtained in the paper.Посилання
A. Banerjee, Uniqueness of meromorphic functions that share two sets, Southeast Asian Bull. Math., 31 (2007), 7–17.
Y.M. Chiang, S.J. Feng, On the Nevanlinna Characteristic f(z +η) and difference equations in complex plane, Ramanujan J., 16 (2008), 105–129. https://doi.org/10.1007/s11139-007-9101-1
B. Deng, D. Liu, D. Yang, Meromorphic function and its difference operator share two sets with weight k, Turk. J. Math., 41 (2017), №5, 1155–1163. https://doi.org/10.3906/mat-1509-73
W.K. Hayman, Meromorphic functions, The Clarendon Press, Oxford, 1964.
S.C. Kumar, S. Rajeshwari, T. Bhuvaneshwari, Results on unicity of meromorphic function with its shift and q-difference, J. Math. Comput. Sci., 12 (2022), 1–16.
I. Lahiri, Value distribution of certain differential polynomials, Int. Math. Math. Sci., 28 (2001), №2, 83–91.
I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Var. Theory Appl., 46 (2001), №3, 241–253. https://doi.org/10.1080/17476930108815411
I. Laine, Nevanlinna theory and complex differential equations, Walter de Gruyter, Berlin/Newyork, 1993.
I. Lahiri, B. Pal, Uniqueness of meromorphic functions with their homogeneous and linear differential polynomials sharing a small function, Bull. Korean Math. Soc., 54 (2017), №3, 825–838. http://dx.doi.org/10.4134/BKMS.b160323
K. Liu, X.G. Qi, Meromorphic solutions of q-shift difference equations, Ann. Polon. Math., 101 (2011), 215–225. https://doi.org/10.4064/ap101-3-2
C. Meng, G. Liu, Weighted sharing and uniqueness for the shifts of meromorphic functions, Tbilisi Mathematical Journal, 12 (2019), №2, 17–27.
X.G. Qi, L.Z. Yang, Properties of meromorphic solutions of q difference equations, Electronic Journal of Differential Equations, 2015 (2015), №59, 1–9.
X.G. Qi, L.Z. Yang, Y. Liu, Meromorphic solutions of q-shift difference equations, Mathematica Slovaca, 66 (2016), №3, 667–676. https://doi.org/10.1515/ms-2015-0168
H.P. Waghamore, M.M. Manakame, Uniqueness results on meromorphic functions with q-shift difference polynomials, Int. J. Open Problems Comput. Sci. Math., 18 (2025), №1, 22–34.
H.P. Waghamore, S. Rajeshwari, Uniqueness of difference polynomials of meromorphic functions, International Journal of Pure and Applied Mathematics, 107 (2016), №4, 971–981. https://dx.doi.org/10.12732/ijpam.v107i4.15
H.P. Waghamore, M. Roopa, Uniqueness of linear q-shift difference polynomial of a meromorphic function, International Journal of Pure and Applied Mathematics, 17 (2024), №1, 27–40. https://dx.doi.org/10.37622/IJPAMS/17.1.2024.27-40
C.C. Yang, On deficiencies of differential polynomials II, Math. Z., 125 (1972), 107–112. https://doi.org/10.1007/BF01110921
H.X. Yi, Meromorphic functions that share one or two values II, Kodai Math. J., 22 (1999), №2, 264–272. https://doi.org/10.2996/kmj/1138044046
C.C. Yang, H.X. Yi, Uniqueness theory of meromorphic functions, Kluwer, Dordrecht, 2003.
H.X. Yi, L.Z. Yang, Meromorphic functions that share two sets, Kodai Math. J., 20 (1997), №2, 127–134. 10.2996/kmj/1138043751
H.Y. Xu, K. Liu, T.B. Cao, Uniqueness and value distribution for q-shifts of meromorphic functions, Math. Commun., 20 (2015), №1, 97–112.
J. Zhang, R. Korhonen, On the Nevanlinna characteristic of f(qz) and its applications, Journal Math. Anal., Appl., 369 (2010), №2, 537–544. https://doi.org/10.1016/j.jmaa.2010.03.038
Авторське право (c) 2025 Biswas Gurudas

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.