On the transfinite density of sequences and its applications to Dirichlet series
Анотація
For an increasing to $\infty$ sequence $(\lambda_n)$ of positive numbers let $\displaystyle n(t)=\sum\limits_{\lambda_n\le t}1,\ N(x)=\int\nolimits_{0}^{x}\dfrac{n(t)}{t}dt, \
L_k(t)=\sum\limits_{\lambda_n\le t}\prod\limits_{j=0}^{k-1}\dfrac{1}{\ln_j \lambda_n}$ for $k\ge 1$ and $t\ge t_k=\exp_k (0)$, where $\ln_j x$ is the $j$-th iteration of the logarithm and $\exp_k (x)$ is the $k$-th iteration of the exponent. The quantities $D(0)=\varlimsup\limits_{t\to+\infty}\frac{n(t)}{t}$ and $\overline{D}^*=\varlimsup\limits_{t\to+\infty}\frac{1}{t}\int\nolimits_0^t \frac{n(x)}{x}dx$ are called the upper density and upper average density of $(\lambda_n)$ respectively. Moreover, let $D_k(0)=\varlimsup\limits_{t\to+\infty}\frac{L_k(t)}{\ln_k t}$ be the upper $k$-logarithmic density and $D=\lim\limits_{k\to\infty}D_k(0)$ be the maximal transfinite density of $(\lambda_n)$.
In the works of many authors devoted to lacunary power series and
Dirichlet series, estimates of the canonical product $\Lambda(z)=\prod\limits_{n=0}^{\infty}1+z^2/\lambda^2_n)$ are used, which is an entire function if $D(0)<+\infty$.
Here various properties of $k$-logarithmic densities are studied and the estimate $\displaystyle\varlimsup\limits_{r\to+\infty}\frac{\ln \Lambda(r)}{r}\le \pi D$ is proved. This allows us to replace
$\overline{D}^*$ with $D$ in many results of G. Polya, S. Mandelbrojt and other authors.
Посилання
G. Polya, Untersuchungen uber Lucken and Singularitaten von Potenzreihen, Math. Z., 29 (1929), 549–640.
M.M. Sheremeta, On k-logarithmic density of sequence and its applications to entire functions, I. Teor. Funkts. Funkts. Anal. Prilozh., 25 (1976), 131–142. (in Russian) https://ekhnuir.karazin.ua/handle/123456789/16410
M.M. Sheremeta, On k-logarithmic density of sequence and its applications to entire functions, II. Teor. Funkts. Funkts. Anal. Prilozh., 25 (1976), 142–156. (in Russian) https://ekhnuir.karazin.ua/handle/123456789/16411
A. Pfluger, G. Polya, On the power series of an integral function having an exceptional value, Proc. Cambridge Phil. Soc., 31 (1935), 153–155.
R. Fejer, Uber die Wurzel von kleinsten absoluten Betrage einer algebraischen Gleichung, Math. Ann., 65 (1908), 413–423.
T. Murai, The deficiency of entire functions with Fejer gaps, Ann. Inst. Fourier, Grenoble, 33 (1983),№3, 39–58. http://www.numdam.org/item?id=AIF_1983__33_3_39_0
S. Mandelbrojt, Series adherentes. Regularisation des suites. Applications, Gauthier-Villars, Paris, 1952.
A.F Leont’ev, Series of exponents, Moscow, Nauka, 1976.
B.V. Vinnitskii, M.M. Sheremeta, Asymptotic properties of the coefficients of Dirichlet series representing entire functions, Ukr. Math. J., 27 (1975), №2, 117–124. https://doi.org/10.1007/BF01089992
Авторське право (c) 2025 M. M. Sheremeta

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.