Control problem for the Markov-modulated Poisson process in the diffusion schema
Анотація
This paper addresses the optimal control problem for a stochastic evolution system perturbed by a Markov-modulated Poisson process within a diffusion approximation framework. The considered system captures complex dynamics involving continuous evolution and discrete, state-dependent jumps, enabling the modeling of systems with regime-switching behavior or infrequent but significant events. The control function is constructed by minimizing a quality criterion through a stochastic optimization procedure. To analyze the asymptotic behavior of the system as the perturbation parameter vanishes, we derive the generator of the process and solve a corresponding singular perturbation problem. This allows us to prove the weak convergence of the stochastic system to a diffusion process. Furthermore, we establish sufficient conditions under which the control strategy converges almost surely to an optimal control.
The obtained result makes it possible to study the rate of convergence of evolution under the optimal control for problems with a Markov-modulated Poisson perturbation.
Посилання
J. Dupacova, J. Hurt, J. Stepan, Stochastic modeling in economics and finance, Applied Optimization, Kluwer, 2002, 386 p. https://doi.org/10.1007/b101992
Ya.M. Chabanyuk, A.V. Nikitin, U.T. Khimka, Control problem for the impulse process under stochastic optimization procedure and Levy conditions, Mat. Stud., 55 (2021), №1, 107–112. https://doi.org/10.30970/ms.55.1.107-112
W. Fischer, K. Meier-Hellstern, The Markov-modulated Poisson process (MMPP) cookbook, Perf. Evaluation, 18 (1993), №12, 149–171. https://doi.org/10.1016/0166-5316(93)90035-S
A.M. Samoilenko, O.M. Stanzhytskyi, Qualitative and asymptotic analysis of differential equations with random perturbations, World Scientific, Singapore, 2011, 324 p. https://doi.org/10.1142/8016
Ya.M. Chabanyuk, S.A. Semenyuk, U.T. Khimka, R.A. Chypurko, Stochastic evolution under Markovmodulated Poisson perturbation in the diffusion approximation schema, Cybern. Syst. Anal., 61, (2025), 443–449. https://doi.org/10.1007/s10559-025-00781-z
P. Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., 1999, 286 p. https://doi.org/10.1002/9780470316962
V.S. Korolyuk, N. Limnios, Stochastic systems in merging phase space, World Scientific, 2005, 348 p. https://doi.org/10.1142/5979
S.A. Semenyuk, Y.M. Chabanyuk, Stochastic evolution system with Markov-modulated Poisson perturbations in the averaging schema, Mat. Stud., 62 (2024), №1, 102–108. https://doi.org/10.30970/ms.62.1.102-108
S. Ankirchner, S. Engelhardt, Long term average cost control problems without ergodicity, Appl. Math. Optim., 86 (2022), 42. https://doi.org/10.1007/s00245-022-09902-y
S.A. Semenyuk, Y.M. Chabanyuk, Fluctuations of a stochastic system under an asymptotic diffusive perturbation, Cybern. Syst. Anal., 44 (2008), 716–721. https://doi.org/10.1007/s10559-008-9042-8
Авторське право (c) 2025 S. A. Semenyuk, Ya.M. Chabanyuk, R. A. Chypurko, A. A. Lytvyn

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.