Control problem for the Markov-modulated Poisson process in the diffusion schema

  • S. A. Semenyuk Lviv Polytechnic National University, Lviv, Ukraine
  • Ya.M. Chabanyuk Lublin University of Technology, Lublin, Poland Ivan Franko National University of Lviv, Lviv, Ukraine
  • R. A. Chypurko Ivan Franko National University of Lviv, Lviv, Ukraine
  • A. A. Lytvyn Lviv Polytechnic National University, Lviv, Ukraine

Анотація

This paper addresses the optimal control problem for a stochastic evolution system perturbed by a Markov-modulated Poisson process within a diffusion approximation framework.  The considered system captures complex dynamics involving continuous evolution and discrete, state-dependent jumps, enabling the modeling of systems with regime-switching behavior or infrequent but significant events. The control function is  constructed by minimizing a quality criterion through a stochastic optimization procedure. To analyze the asymptotic behavior of the system as the perturbation parameter vanishes, we derive the generator of the process and solve a corresponding singular perturbation problem. This allows us to prove the weak convergence of the stochastic system to a diffusion process. Furthermore, we establish sufficient conditions under which the control strategy converges almost surely to an optimal control. 
The obtained result makes it possible to study the rate of convergence of evolution under the optimal control for problems with a Markov-modulated Poisson perturbation. 

Біографії авторів

S. A. Semenyuk, Lviv Polytechnic National University, Lviv, Ukraine

Lviv Polytechnic National University, Lviv, Ukraine

Ya.M. Chabanyuk, Lublin University of Technology, Lublin, Poland Ivan Franko National University of Lviv, Lviv, Ukraine
Lublin University of Technology, Lublin, Poland Ivan Franko National University of Lviv, Lviv, Ukraine
R. A. Chypurko, Ivan Franko National University of Lviv, Lviv, Ukraine

Ivan Franko National University of Lviv, Lviv, Ukraine

A. A. Lytvyn, Lviv Polytechnic National University, Lviv, Ukraine

Lviv Polytechnic National University, Lviv, Ukraine

Посилання

J. Dupacova, J. Hurt, J. Stepan, Stochastic modeling in economics and finance, Applied Optimization, Kluwer, 2002, 386 p. https://doi.org/10.1007/b101992

Ya.M. Chabanyuk, A.V. Nikitin, U.T. Khimka, Control problem for the impulse process under stochastic optimization procedure and Levy conditions, Mat. Stud., 55 (2021), №1, 107–112. https://doi.org/10.30970/ms.55.1.107-112

W. Fischer, K. Meier-Hellstern, The Markov-modulated Poisson process (MMPP) cookbook, Perf. Evaluation, 18 (1993), №12, 149–171. https://doi.org/10.1016/0166-5316(93)90035-S

A.M. Samoilenko, O.M. Stanzhytskyi, Qualitative and asymptotic analysis of differential equations with random perturbations, World Scientific, Singapore, 2011, 324 p. https://doi.org/10.1142/8016

Ya.M. Chabanyuk, S.A. Semenyuk, U.T. Khimka, R.A. Chypurko, Stochastic evolution under Markovmodulated Poisson perturbation in the diffusion approximation schema, Cybern. Syst. Anal., 61, (2025), 443–449. https://doi.org/10.1007/s10559-025-00781-z

P. Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., 1999, 286 p. https://doi.org/10.1002/9780470316962

V.S. Korolyuk, N. Limnios, Stochastic systems in merging phase space, World Scientific, 2005, 348 p. https://doi.org/10.1142/5979

S.A. Semenyuk, Y.M. Chabanyuk, Stochastic evolution system with Markov-modulated Poisson perturbations in the averaging schema, Mat. Stud., 62 (2024), №1, 102–108. https://doi.org/10.30970/ms.62.1.102-108

S. Ankirchner, S. Engelhardt, Long term average cost control problems without ergodicity, Appl. Math. Optim., 86 (2022), 42. https://doi.org/10.1007/s00245-022-09902-y

S.A. Semenyuk, Y.M. Chabanyuk, Fluctuations of a stochastic system under an asymptotic diffusive perturbation, Cybern. Syst. Anal., 44 (2008), 716–721. https://doi.org/10.1007/s10559-008-9042-8

Опубліковано
2025-09-22
Як цитувати
Semenyuk, S. A., Chabanyuk, Y., Chypurko, R. A., & Lytvyn, A. A. (2025). Control problem for the Markov-modulated Poisson process in the diffusion schema. Математичні студії, 64(1), 99-106. https://doi.org/10.30970/ms.64.1.99-106
Розділ
Статті