Waring-Girard formulas for block-symmetric and block-supersymmetric polynomials
Анотація
This paper investigates the structure and properties of block-symmetric and block-super\-symmetric polynomials in Banach spaces. The study extends classical symmetric polynomial results to infinite-dimensional settings, particularly in sequence spaces such as $\ell_p(\mathbb{C}^s),$ $1\leq p<\infty$ and spaces of two-sided absolutely summing series of vectors in $\mathbb{C}^s$ for some positive integer $s>1.$ In this paper, we derive analogs of the Waring-Girard formulas for block-symmetric and block-supersymmetric polynomials and explore their combinatorial applications.
Посилання
A. Bandura, V. Kravtsiv, T. Vasylyshyn, Algebraic basis of the algebra of all symmetric continuous polynomials on the Cartesian product of $ell_p$-spaces, Axioms, 11 (2022), 41. https://doi.org/10.3390/axioms11020041
I. Chernega, A. Zagorodnyuk, Supersymmetric polynomials and a ring of multisets of a Banach algebra, Axioms, 11 (2022), 511. https://doi.org/10.3390/axioms11100511
I. Chernega, P. Galindo, A. Zagorodnyuk, On the spectrum of the algebra of bounded-type symmetric analytic functions on $ell_1$, Math. Nachr., 297 (2025), 3835—3846. https://doi.org/10.1002/mana.202300415
I. Chernega, P. Galindo, A. Zagorodnyuk, Some algebras of symmetric analytic functions and their spectra, Proc. Edinb. Math. Soc., 55 (2012), 125–142. https://doi.org/10.1017/S0013091509001655
I. Chernega, M. Martsinkiv, T. Vasylyshyn, A. Zagorodnyuk, Applications of supersymmetric polynomials in statistical quantum physics, Quantum Rep., 5 (2023), 683–697. https://doi.org/10.3390/quantum5040043
Y. Chopyuk, T. Vasylyshyn, A. Zagorodnyuk, Rings of multisets and integer multinumbers, Mathematics, 10 (2022), 778. https://doi.org/10.3390/math10050778
M. Gonzalez, R. Gonzalo, J.A. Jaramillo, Symmetric polynomials on rearrangement-invariant function spaces, J. Lond. Math. Soc., 59 (1999), 681–697. https://doi.org/10.1112/S0024610799007164
O.V. Handera-Kalynovska, V.V. Kravtsiv, The Waring-Girard formulas for symmetric polynomials on spaces $ell_p$, Carpathian Math. Publ., 16 (2024), №2, 407–413. https://doi:10.15330/cmp.16.2.407-413
F. Jawad, A. Zagorodnyuk, Supersymmetric polynomials on the space of absolutely convergent series, Symmetry, 11 (2019), 1111. https://doi.org/10.3390/sym11091111.
V. Kravtsiv, Analogues of the Newton formulas for the block-symmetric polynomials, Carpathian Math. Publ., 12 (2020), 17–22. https://doi.org/10.15330/cmp.12.1.17-22
V. Kravtsiv, Block-supersymmetric polynomials on spaces of absolutely convergent series, Symmetry, 16 (2024), 197. https://doi.org/10.3390/sym16020179
V. Kravtsiv, M. Martsinkiv, A. Yaselskyi, Analogues of Waring-Girard formulas for the block-symmetric polynomials on the space $ell_1(mathbb{C}^2)$ and $ell_p(mathbb{C}^2)$, Visnyk Lviv Univ., Ser. Mech.-Math., 96 (2024), 61–70. http://dx.doi.org/10.30970/vmm.2024.96.061-070
V. Kravtsiv, The analogue of Newton’s formula for block-symmetric polynomials, Int. J. Math. Anal., 10 (2016), №7, 323–327. https://doi.org/10.12988/ijma.2016.617
V. Kravtsiv, T. Vasylyshyn, A. Zagorodnyuk, On algebraic basis of the algebra of symmetric polynomials on $ell_p(mathbb{C}^n)$, J. Funct. Spaces, 2017, 4947925. https://doi.org/10.1155/2017/4947925
V. Kravtsiv, D. Vitrykus, Generating elements of the algebra of block-symmetric polynomials on the product of Banach spaces $mathbb{C}^s$, AIP Conf. Proc., 2483 (2022), 030010. https://doi.org/10.1063/5.0115680
V.V. Kravtsiv, A.V. Zagorodnyuk, Multiplicative convolution on the algebra of block-symmetric analytic functions, J. Math. Sci., 246 (2020), №2, 245–255. https://doi.org/10.1007/s10958-020-04734-z
V.V. Kravtsiv, A.V. Zagorodnyuk, Spectra of algebras of block-symmetric analytic functions of bounded type, Mat. Stud., 58 (2022), 69–81. https://doi.org/10.30970/ms.58.1.69-81
I.G. Macdonald, Symmetric functions and orthogonal polynomials, University Lecture Series, V.12, AMS: Providence, RI, 1997.
P.A. MacMahon, Combinatory analysis, Volume I, University Press, Cambridge, 1915.
A. Nemirovskii, S. Semenov, On polynomial approximation of functions on Hilbert space, Mat. USSR-Sb., 21 (1973), 255–277. https://doi.org/10.1070/SM1973v021n02ABEH002016
M. Rosas, MacMahon symmetric functions, the partition lattice, and Young subgroups, J. Combin. Theory Ser. A, 96 (2001), 326–340. https://doi.org/10.1006/jcta.2001.3186
T.V. Vasylyshyn, Algebras of symmetric analytic functions on cartesian powers of Lebesgue integrable in a power $p in [1, infty)$ functions, Carpathian Math. Publ., 13 (2021), №2, 340—351. https://doi:10.15330/cmp.13.2.340-351
T. Vasylyshyn, Symmetric functions on spaces $ell_p(mathbb{R}^n)$ and $ell_p(mathbb{C}^n)$, Carpathian Math. Publ., 12 (2020), №1, 5–15. https://doi:10.15330/cmp.12.1.5-16
H. Weyl, The classical groups: their invariants and representations, Princeton University Press, Princeton, New Jersey, 1973.
Авторське право (c) 2025 V. V. Kravtsiv, P. Y. Dolyshnjak, R. Y. Stakhiv

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.