Source inverse problem for fractional kinetic equation
Анотація
We study the Cauchy problem for fractional kinetic equation in spaces with values in the entire scale of spaces of Bessel potentials, prove its unique, classical in time, solvability, obtaining an analogue of the maximum regularity of the solution according to Da Prato and Grisvard.
We also study the inverse problem on determining a space-dependent component in the right-hand side of such equation under a time-integral additional condition.
We use the method of fundamental solution of the equation.
We are investigating properties of the Green's operators of the Cauchy problem for fractional kinetic equation in spaces of continuous functions with values in spaces of Bessel potentials and find sufficient conditions for a time-local, classical in time and with values in spaces of Bessel potentials, unique solvability of the inverse problem. We define the unknown function on the right-hand side of the fractional kinetic equation over the entire scale of spaces of Bessel potentials.
The solution of the problem is reduced to the study of the unique solvability of some Fredholm's linear integral equation of the second kind in spaces of continuous functions with values in the entire scale of spaces of Bessel potentials. The unknown function on the right-hand side of the fractional kinetic equation is expressed through the solution of this integral equation.
Посилання
V.V. Anh, N.N. Leonenko, Spectral analysis of fractional kinetic equations with random datas, J. of Statistical Physics, 104 (2001), №5/6, 1349–1387.
M. Caputo, Linear model of dissipation whose Q is almost friequency independent, II, Geophysical. Journal International, 13 (1967), №5, 529–539.
R.S. Damor, S. Kumar, A.K. Shukla, Solution of fractional bioheat equation in terms of Fox’s H-funtion, Damor et al. Springer Plus, 5 (2016), 111. DOI 10.1186/s40064-016-1743-2
Duan Jun Sheng, Time- and space-fractional partial differential equations, J. Math. Phis., 46 (2005), 013504.
S.D. Eidelman, S.D. Ivasyshen, A.N. Kochubei, Analytic methods in the theory of differential and pseudodifferential equations of parabolic type, Birkhauser Verlag, Basel-Boston-Berlin, 2004.
R. Gorenflo, A. Iskenderov, Yu. Luchko, Mapping between solutions of fractional diffusion-wave equations, Fract. Calc. Appl. Anal., 3 (2000), 75–86.
A. Hanyga, Multi-dimensional solutions for space-time-fractional diffusion equations, Proc. R. Soc. London, 458 (2002), 429–450.
R. Hilfer (Ed.), Applications of Fractional Calculas in Physics, World Scientific, Singapore, 2000.
F. Huang, B. Guo, General solutions to a class of time fractional partial differential equations, Appl. Math. Mech., 31 (2010), 815–626.
M. Kirane, A. Lopushansky, H. Lopushanska, Inverse problem for a time fractional differential equation with a time- and space-integral conditions, Math. Meth. Appl. Sci., 46 (2023), №15, 16381–16393. DOI10.1002/mma.9453. https://doi.org/10.1002/mma.9453
M. Kirane, A. Lopushansky, H. Lopushanska, Determination of two unknown functions of different variables in a time-fractional differential equation, Math. Meth. Appl. Sci., (2024), 1–10. DOI 10.1002/mma.10539.
A.N. Kochubei, Fractional-parabolic systems, Potential Anal., 37 (2012), 1–30. https://doi.org/10.1007/s11118-011-9243-z
A. Lopushansky, The Cauchy problem for an equation with fractional derivatives in Bessel potential spaces, Sib. Math. J., 55 (2014), №6, 1089–1097. DOI:10.1134/30037446614060111
A. Lopushansky, O. Lopushansky, A. Szpila, Fractional abstract Cauchy problem on complex interpolation scales, FCAA, 23 (2020), №4, 1125–1140. DOI:10.1515/fca-2020-0057
Yu. Luchko, M. Yamamoto, General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems, Fract. Calc. Appl. Anal., 19 (2016), 675–695.
F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9 (1996), №6, 23–28.
H.P. Lopushanska, A.O. Lopushanskyj, Space-time fractional Cauchy problem in spaces of generalized functions, Ukrainian Math. J., 64 (2013), №8, 1215–1230. doi: 10.1007/s11253-013-0711-z (translaited from Ukr. Mat. Zhurn., 64 (2012), №8, 1067–1080).
H. Lopushanska, A. Lopushansky, Inverse problem with a time-integral condition for a fractional diffusion equation, Math. Meth. Appl. Sci., 42 (2019), №6, 3327–3340. https://doi.org/10.1002/mma.5587
H. Lopushanska, A. Lopushansky, Inverse problems for a time fractional diffusion equation in the Schwartz-type distributions, Math. Meth. Appl. Sci., 44 (2021), №3, 2381–2392. https://doi.org/10.1002/mma
A. Lopushansky, O. Lopushansky, S. Sharyn, Nonlinear inverse problem of control parameter determination for a space-time fractional diffusion equation, Appl. Math. Comput., 390 (2021), 125589. https://doi.org/10.1016/j.amc.2020.125589
G. Da Prato, P. Grisvard, Equations d’evolution abstraites non lineaires de type parabolique, Ann. Mat. Pura. Appl. IV, 120 (1979), 329–396.
R.L. Magin, Fractional calculas in Bioengineering: Part 1, Part 2, Part 3, Critical Rewiews in Biomedical Engineering, 32 (2004), 1–104, 105–193, 195–377.
Krein S.G. Functional analysis (under the general editorship of Crane S.G.), Series “Reference Mathematical Library”, M., 1972.
Авторське право (c) 2025 P. I. Boyko, H. P. Lopushanska

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.