A uniqueness theorem for meromorphic functions
Анотація
In this paper, we prove the uniqueness theorem for a special class of meromorphic functions on the complex plane $\mathbb{C}$. In particular, we study the class of meromorphic functions $f$ in the domain $\mathbb{C}\setminus K'$, where $K'$ is the finite set of limit points of simple poles of the function $f$. In this class, we describe non-trivial subclasses in which every function $f$ can be uniquely determined by the residues of the function $f$ at its poles. The result covered in this paper is a part of a problem in a spectral operator theory.
Посилання
I. Hur, M. McBride, C. Remling, The Marchenko representation of reflectionless Jacobi and Schrodinger operators, Trans. AMS, 368 (2016), №. 2, 1251–1270.
A. Poltoratski, C. Remling, Reflectionless Herglotz functions and Jacobi matrices, Comm. Math. Phys., 288 (2009), №. 3, 1007–1021.
A. Poltoratski, C. Remling, Approximation results for reflectionless Jacobi matrices, Int. Math. Res. Not., 16 (2011), 3575–3617.
P. Duren, A. Schuster, Bergman spaces. American Mathematical Society, Providence, RI, 2004. https://doi.org/10.1090/surv/100
W. Blaschke, Eine Erweiterung des Satzes von Vitali uber Folgen analytischer Funktionen, Berichte, Leipzig, 67 (1915), 194–200.
Yu. S. Trukhan, M. M. Sheremeta, On l-index boundedness of the Blaschke product, Mat. Stud. 19 (2003), №1, 106–112.
Yu. S. Trukhan, M. M. Sheremeta, On the boundedness of l-index of canonical product of zero genus and of Blaschke product, Mat. Stud. 29 (2008), №1, 45–51. (in Ukrainian)
B. Ja. Levin, Distribution of zeros of entire functions, Revised ed., Transl. Math. Monographs, 5, American Mathematical Society, Providence, R.I., 1980.
R. Hryniv, B. Melnyk, Ya. Mykytyuk, Inverse scattering for reflectionless Schrodinger operators with integrable potentials and generalized soliton solutions for the KdV equation, Ann. Henri Poincare, 22 (2021), 487–527. https: //doi.org/10.1007/s00023-020-01000-5
R. Young, An introduction to non-harmonic Fourier series, 2nd edition, Academic Press, 2001.
Авторське право (c) 2024 N. Sushchyk, D. Lukivska
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.