On certain classes of Dirichlet series with real coefficients absolute convergent in a half-plane

  • M. M. Sheremeta Ivan Franko National University of Lviv, Lviv

Анотація

 For $h>0$, $\alpha\in [0,h)$ and $\mu\in {\mathbb R}$  denote by   $SD_h(\mu, \alpha)$ a class of absolutely convergent in the half-plane $\Pi_0=\{s:\, \text{Re}\,s<0\}$ Dirichlet series $F(s)=e^{sh}+\sum_{k=1}^{\infty}f_k\exp\{s\lambda_k\}$ such that   \smallskip\centerline{$\text{Re}\left\{\frac{(\mu-1)F'(s)-\mu F''(s)/h}{(\mu-1)F(s)-\mu F'(s)/h}\right\}>\alpha$ for all $s\in \Pi_0$,}   \smallskip\noi and let  $\Sigma D_h(\mu, \alpha)$ be a class of absolutely convergent in half-plane $\Pi_0$ Dirichlet series $F(s)=e^{-sh}+\sum_{k=1}^{\infty}f_k\exp\{s\lambda_k\}$ such that   \smallskip\centerline{$\text{Re}\left\{\frac{(\mu-1)F'(s)+\mu F''(s)/h}{(\mu-1)F(s)+\mu F'(s)/h}\right\}<-\alpha$ for all $s\in \Pi_0$.}   \smallskip\noi Then $SD_h(0, \alpha)$ consists of pseudostarlike functions of order $\alpha$ and $SD_h(1, \alpha)$ consists of pseudoconvex functions of order $\alpha$.   For functions from the classes  $SD_h(\mu, \alpha)$ and  $\Sigma D_h(\mu, \alpha)$, estimates for the coefficients and growth estimates are obtained. {In particular, it is proved the following statements:  1) In order that function $F(s)=e^{sh}+\sum_{k=1}^{\infty}f_k\exp\{s\lambda_k\}$ belongs to $SD_h(\mu, \alpha)$, it is sufficient, and in the case when $f_k(\mu\lambda_k/h-\mu+1)\le 0$ for all $k\ge 1$, it is necessary that}   \smallskip\centerline{$ \sum\limits_{k=1}^{\infty}\big|f_k\big(\frac{\mu\lambda_k}{h}-\mu+1\big)\big|(\lambda_k-\alpha)\le h-\alpha,$}   \noi {where $h>0, \alpha\in [0, h)$ (Theorem 1).}   \noi 2) {In order that function $F(s)=e^{-sh}+\sum_{k=1}^{\infty}f_k\exp\{s\lambda_k\}$ belongs to $\Sigma D_h(\mu, \alpha)$, it is sufficient, and in the case when $f_k(\mu\lambda_k/h+\mu-1)\le 0$ for all $k\ge 1$, it is necessary that   \smallskip\centerline{$\sum\limits_{k=1}^{\infty}\big|f_k\big(\frac{\mu\lambda_k}{h}+\mu-1\big)\big|(\lambda_k+\alpha)\le h-\alpha,$}   \noi where $h>0,  \alpha\in [0, h)$ (Theorem~2).}  Neighborhoods of such functions are investigated. Ordinary Hadamard compositions and Hadamard compositions of the genus $m$ were also studied.

Біографія автора

M. M. Sheremeta, Ivan Franko National University of Lviv, Lviv

Ivan Franko National University of Lviv, Lviv, Department of Mechanics and Mathematics, Professor

Посилання

Holovata O.M., Mulyava O.M., Sheremeta M.M. Pseudostarlike, pseudoconvex and close-to-pseudoconvex Dirichlet series satisfying differential equations with exponential coefficients, Мath. Methods and Phys-Mech. Fields, 61 (2018), №1, 57–70.

Sheremeta M.M. Geometric properties of analytic solutions of differential equations, Lviv, Publ. I.E. Chyzhykov, 2019.

Sheremeta M.M. Pseudostarlike and pseudoconvex Dirichlet series of order $alpha$ and type $beta$, Mat. Stud., 54 (2020), №1, 23–31. https://doi.org/10.30970/ms.54.1.23-31

Chen M-P., Irmak H., Srivastava H.M., Yu. C. Certain subclasses of meromorphically univalent functions with positive and negative coefficients, Pan Amer. Math. J., 6 (1996), №2, 65–72.

Goodman A.W. Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8 (1957), 598–601.

Ruscheweyh S. Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81 (1981), №4, 521–527.

Sheremeta M.M. Neighborhoods of Dirichlet series absolutely convergent in half-plane, Visn. Lviv Univ. Ser. Mech.-Math., 91 (2021), 63–71.

Sheremeta M.M. On certain subclass of Dirichlet series absolutely convergent in half-plane, Mat. Stud., 57 (2022), №1, 32–44. https://doi.org/10.30970/ms.57.1.32-44

Hadamard J. Theoreme sur le s´eries entieres, Acta math., 22 (1899), 55–63.

Hadamard J. La s´erie de Taylor et son prolongement analitique, Scientia Phys.-Math., (1901), №12,43–62.

Bieberbach L. Analytische Fortzetzung, Berlin, 1955.

Bandura A.I., Mulyava O.M., Sheremeta M.M. On Dirichlet series similar to Hadamard compositions, Carpathian Math. Publ., 15 (2023), №1, 180–195.

Sheremeta M.M., Skaskiv O.B. Pseudostarlike and pseudoconvex in a direction multiple Dirichlet series, Mat. Stud., 58 (2022), №2, 182–200. https://doi.org/10.30970/ms.58.2.182-200

Опубліковано
2024-03-19
Як цитувати
Sheremeta, M. M. (2024). On certain classes of Dirichlet series with real coefficients absolute convergent in a half-plane. Математичні студії, 61(1), 35-50. https://doi.org/10.30970/ms.61.1.35-50
Розділ
Статті