Properties of Laplace-Stieltjes-type integrals

  • M. M. Sheremeta Ivan Franko National University of Lviv, Lviv

Анотація

The properties of Laplace-Stieltjes-type integrals $I(r)=\int_{0}^{\infty}a(x)f(xr)dF(x)$ are studied, where $F$ is a non-negative non-decreasing unbounded continuous on the right function on $[0,\,+\infty)$,
$f(z)=\sum_{k=0}^{\infty}f_kz^k$ is an entire transcendental function with $f_k\ge 0$ for all $k\ge0$, and a function $a(x)\ge 0$ on $[0,\,+\infty)$ is such that the Lebesgue-Stieltjes integral $\int_{0}^{K}a(x)f(xr)dF(x)$ exists for every $r\ge 0$ and
$K \in [0,\,+\infty)$.

For the maximum of the integrand $\mu(r)=\sup\{a(x)f(xr)\colon x\ge 0\}$ it is proved that if
$$\varliminf\limits_{x\to+\infty}\frac{f^{-1}\left(1/a(x)\right)}{x}=R_{\mu}$$ then $\mu(r)<+\infty$ for $r<R_{\mu}$ and $\mu(r)=+\infty$ for $r>R_{\mu}$. The relationship between $R_{\mu}$ and the radius $R_c$ of convergence of the integral $I(r)$ was found. The concept of the central point $\nu(r)$ of the maximum of the integrand is introduced and the formula for finding $\ln \mu(r)$ over $\nu(r)$ is proved.
Under certain conditions on the function $F$, estimates of $I(r)$ in terms of $\mu(r)$ are obtained, and in the case when $R_{\mu}=+\infty$,
in terms of generalized orders, a relation is established between the growth $\mu(r)$ and $I(r)$ and the decrease of the function $a(x)$.

Посилання

Boas R.P., Pollard H., Complete sets of Bessel and Legendre functions, Annals of Math., 48 (1947), №2, 366–384.

Guadalupe J.J., P´erez M., Ruiz F.J., Varona J.L., Mean and weak convergence of Fourier–Bessel series, J. Math. Anal. Appl., 173 (1993), 370–389.

Hochstadt H., The mean convergence of Fourier-Bessel series, SIAM Rev., 9 (1967), 211–218.

Vinnitskii B.V. Representation of analytic functions by series $sumnolimits_{n=1}^{+infty}d_nf(lambda_nz)$, Ukr. Math. J., 31 (1979), 501–506. https://doi.org/10.1007/BF01092529

Vinnitskii B.V., Representation of functions by series $sumnolimits_{n=1}^{+infty}d_nf(lambda_nz)$, Ukr. Math. J., 31 (1979), 198–204. https://doi.org/10.1007/BF01089018

Vinnitskii B.V., Completeness of the system f(λnz), Ukr. Math. J., 36 (1984), 493–495. https://doi.org/10.1007/BF01086778

Vinnitskii B.V., On the description of certain absolutely representating systems, Ukr. Mat. Zh., 38 (1986), №1, 93–95.

Vinnitskii B.V., Effective expansion of analytic functions in series in generalized systems of exponents,Ukr. Math. J., 41 (1989), 269–273. https://doi.org/10.1007/BF01060309

Vynnyts’kyi B.V., Khats’ R.V., Some approximation properties of the systems of Bessel functions of index −3/2, Mat. Stud., 34 (2010), 152–159. http://matstud.org.ua/texts/2010/34 2/152-159.pdf

Vynnyts’kyi B.V., Khats’ R.V. A remark on basis property of systems of Bessel and Mittag-Leffler type functions J. Contemp. Math. Anal., 50 (2015), №6, 300–305.

Vynnyts’kyi B.V., Khats’ R.V., Complete biorthogonal systems of Bessel functions, Mat. Stud., 48 (2017), №2, 150–155. https://doi.org/10.15330/ms.48.2.150-155

Skaskiv O.B., Trusevych O.M., Relations of Borel type for generalizations of exponential series, Ukr. Math. J., 53 (2001), 1926–1931. https://doi.org/10.1023/A:1015219417195

Skaskiv O.B., Rate of convergence of positive series, Ukr. Math. J., 56 (2004), 1975–1988. https://doi.org/10.1007/s11253-005-0162-2

Sheremeta M.M., On the growth of series in system of functions and Laplace-Stieltjes integrals, Mat. Stud., 55 (2021), №2, 124–131. https://doi.org/10.30970/ms.55.2.124-131

B.V. Vinnitsky, Some approximation properties of generalized systems of exponentials, Drogobych, 1991, Dep. in UkrNIINTI 25.02.1991. (in Russian)

Sheremeta M.M. Asymptotical behavior of Laplace-Stieltjes integrals, Lviv: VNTL Publishers, 2010.

Sheremeta M.M., Connection between the growth of the maximum of the modulus of an entire function and the moduli of the coefficients of its power series expansion, Izv. Vyssh. Uchebn. Zaved. Mat., (1967), №2, 100–108. (in Russian)

Posiko O.S., Skaskiv O.B., Sheremeta M.M., Estimate of Laplace-Stieltjes integrals, Mat. Stud., 21 (2004), №2, 180–186.

Sheremeta M.M., On two classes of positive functions and the belonging to them of main characteristics of entire functions, Mat. Stud., 19 (2003), №1, 75–82.

Sheremeta M.M., Relative growth of series in system functions and Laplace-Stieltjes type integrals, Axioms, 10 (2021), 43.

Sheremeta M.M., On the growth of series in systems of functions and Laplace-Stieltjes integrals, Mat. Stud., 55 (2021), №2, 124–131.

Опубліковано
2023-12-18
Як цитувати
Sheremeta, M. M. (2023). Properties of Laplace-Stieltjes-type integrals. Математичні студії, 60(2), 115-131. https://doi.org/10.30970/ms.60.2.115-131
Розділ
Статті