On recovering the shape of a quantum tree from the spectrum of the Dirichlet boundary problem

  • O. Boyko South Ukrainian National Pedagogical University Odesa, Ukraine
  • O. Martynyuk South Ukrainian National Pedagogical University Odesa, Ukraine
  • V. Pivovarchik South Ukrainian National Pedagogical University Odesa, Ukraine

Анотація

Spectral problems are considered generated by the Sturm-Liouville equation on equilateral trees with the Dirichlet boundary conditions at the pendant vertices and continuity and Kirchhoff's conditions at the interior vertices. It is proved that there are no co-spectral (i.e., having the same spectrum of such problem) among equilateral trees of $\leq 8$ vertices. All co-spectral trees of $9$ vertices are presented.

Біографії авторів

O. Boyko, South Ukrainian National Pedagogical University Odesa, Ukraine

South Ukrainian National Pedagogical University
Odesa, Ukraine

O. Martynyuk, South Ukrainian National Pedagogical University Odesa, Ukraine

South Ukrainian National Pedagogical University
Odesa, Ukraine

V. Pivovarchik, South Ukrainian National Pedagogical University Odesa, Ukraine

South Ukrainian National Pedagogical University
Odesa, Ukraine

Посилання

R. Band, O. Parzanchevski, G. Ben-Shach, The isospectral fruits of representation theory: quantum graphs and drums, J. Phys. A: Math. Theor., 42 (2009) 175202 (42pp) doi:10.1088/1751-8113/42/17/175202

J. von Below, Can one hear the shape of a network, Partial Differential Equations on Multistructures, Lecture Notes in Pure Mathematics, 219, M. Dekker, NY, (2001), 19–36.

J. von Below. A characteristic equation associated with an eigenvalue problem on c2-networks, Lin. Algebra Appl., 71 (1985), 309–325.

J. Boman, P. Kurasov, R. Suhr, Schr¨odinger operators on graphs and geometry II. Spectral estimates for $L_1$-potentials and Ambartsumian’s theorem, Integr. Eq. Oper. Theory (2018) 90: 40 https: // doi.org/10.107/ s 00020-018 2467-1.

R. Carlson, V. Pivovarchik, Spectral asymptotics for quantum graphs with equal edge lengths, J. Phys.A: Math. Theor., 41 (2008) 145202, 16 p.

R. Carlson. V. Pivovarchik, Ambarzumian’s theorem for trees, Electr. J. Diff. Equ., 2007 (2007), №142,1–9.

C. Cattaneo, The spectrum of the continuous Laplacian on a graph, Monatsh. Math., 124 (1997), №3, 215–235.

A. Chernyshenko, V. Pivovarchik, Recovering the shape of a quantum graph. Integral Equations and Operator Theory, 92, (2020), Art. 23.

A. Chernyshenko, V. Pivovarchik. Cospectral quantum graphs arXiv:2112.14235 [math-ph] 23 Mar 22. Accepted for publication in Ukrainian Math. J.

P. Exner, A duality between Schr¨odinger operators on graphs and certain Jacobi matrices, Ann. Inst. H. Poincar´e, Sec. A, 66 (1997), 359–371.

B. Gutkin, U. Smilansky, Can one hear the shape of a graph? J. Phys. A Math. Gen., 34 (2001), 6061–6068.

M. Kiss, Spectral determinants and an Ambarzumian type theorem on graphs, Integral Equations and Operator Theory, 92, (2020), Art. 22

P. Kurasov, S. Naboko, Rayleigh estimates for differential operators on graphs, J. Spectr. Theory, 4 (2014), №2, 21136219.

D. Mugnolo, V. Pivovarchik. Distinguishing co-spectral quantum graphs by scattering, Phys. A: Math. Theor., 56, issue 9, (2023) DOI: 10.1088/1751-8121/acbb44.

M. M¨oller, V. Pivovarchik, Direct and inverse finite-dimensional spectral problems on graphs Operator Theory: Advances and Applications, 283. Birkh¨auser/Springer, 2020. 359 pp. ISBN: 978-3-030-60483-7; 978-3-030-60484-4 https://www.springer.com/gp/book/9783030604837

O. Parzanchevski, R. Band, Linear representations and isospectrality with boundary conditions, J. Geom. Anal., 20 (2010), 439–471, doi 10.1007/s12220-009-9115-6

M.-E. Pistol, Generating isospectral but not isomorphic quantum graphs, arXiv: 2104.12885 [math. SP] 19 Sep 21.

V. Pivovarchik, On Ambarzumian type theorems for tree domains, Opuscula Math., 42 (2022), №3, 427–437.

Yu. Pokorny, O. Penkin, V. Pryadiev, A. Borovskih, K. Lazarev, S. Shabrov. Differential equations on geometric graphs (in Russian), Fizmatlit, 2005.

C.-F. Yang, X.C. Xu, Ambarzumian-type theorems on a graphs with loops and double edges, J. Math. Anal. Appl., 444, (2016), №2, 1348–1358.

Опубліковано
2023-12-18
Як цитувати
Boyko, O., Martynyuk, O., & Pivovarchik, V. (2023). On recovering the shape of a quantum tree from the spectrum of the Dirichlet boundary problem . Математичні студії, 60(2), 162-172. https://doi.org/10.30970/ms.60.2.162-172
Розділ
Статті