A new model of the free monogenic digroup
Анотація
It is well-known that one of open problems in the theory of Leibniz algebras is to find a suitable generalization of Lie’s third theorem which associates a (local) Lie group to any Lie algebra, real or complex. It turns out, this is related to finding an appropriate analogue of a Lie group for Leibniz algebras. Using the notion of a digroup, Kinyon obtained a partial solution of this problem, namely, an analogue of Lie’s third theorem for the class of so-called split Leibniz algebras. A digroup is a nonempty set equipped with two binary associative operations, a unary operation and a nullary operation satisfying additional axioms relating these operations.
Digroups generalize groups and have close relationships with the dimonoids and dialgebras, the trioids and trialgebras, and other structures. Recently, G. Zhang and Y. Chen applied the method of Grobner–Shirshov bases for dialgebras to construct the free digroup of an arbitrary rank, in particular, they considered a monogenic case separately. In this paper, we give a simpler and more convenient digroup model of the free monogenic digroup. We construct a new class of digroups which are based on commutative groups and show how the free monogenic group can be obtained from the free monogenic digroup by a suitable factorization.
Посилання
O.D. Artemovych, D. Blackmore, A.K. Prykarpatski, Poisson brackets, Novikov-Leibniz structures and integrable Riemann hydrodynamic systems, Journal of Nonlinear Math. Physics, 24 (2017), №1, 41–72.
R. Felipe, Generalized Loday algebras and digroups, Comunicaciones del CIMAT, (2004), no. I-04-01/21-01-2004.
M.K. Kinyon, Leibniz algebras, Lie racks, and digroups, Journal of Lie Theory, 17 (2007), 99–114.
K. Liu, A class of group-like objects, (2003), www.arXiv.org/math.RA/0311396
J.-L. Loday, Dialgebras, In: Dialgebras and related operads, Lect. Notes Math., 1763 (2001), 7–66.
J.D.H. Smith, Cayley theorems for Loday algebras, Results Math., 77 (2022), 218, https://doi.org/10.1007/s00025-022-01748-8
F. Ongay, R. Velasquez, L.A. Wills-Toro, Normal subdigroups and the isomorphism theorems for digroups, Algebra Discrete Math., 22 (2016), №2, 262–283.
J.D. Phillips, A short basis for the variety of digroups, Semigroup Forum, 70 (2005), 466–470.
J. Rodriguez-Nieto, O.P. Salazar-Diaz, R. Velasquez, Augmented, free and tensor generalized digroups, Open Math., 17 (2019), №1, 71–88.
O.P. Salazar-Diaz, R. Velasquez, L.A. Wills-Toro, Generalized digroups, Comm. Algebra, 44 (2016), №7, 2760–2785.
G. Zhang, Y. Chen, A construction of the free digroup, Semigroup Forum, 102 (2021), 553–567.
G. Zhang, Y. Chen, A new Composition-Diamond lemma for dialgebras, Algebra Colloq., 24 (2017), №2, 323–350.
A.V. Zhuchok, Yu.V. Zhuchok, On two classes of digroups, S˜ao Paulo J. Math. Sci., 11 (2017), №1, 240–252.
Yu.V. Zhuchok, Automorphisms of the endomorphism semigroup of a free commutative dimonoid, Comm. Algebra, 45 (2017), №9, 3861–3871.
Yu.V. Zhuchok, Automorphisms of the endomorphism semigroup of a free commutative g-dimonoid, Algebra Discrete Math., 21 (2016), №2, 309–324.
Yu.V. Zhuchok, Endomorphisms of free abelian monogenic digroups, Mat. Stud., 43 (2015), №2, 144–152.
Yu.V. Zhuchok, Representations of ordered dimonoids by binary relations, Asian-Eur. J. Math., 7 (2014), 1450006, 13 p.
Авторське право (c) 2023 Yu. Zhuchok, G. Pilz
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.