Boundedness of the L-index in a direction of the sum and product of slice holomorphic functions in the unit ball
Анотація
Let $\mathbf{b}\in\mathbb{C}^n\setminus\{\mathbf{0}\}$ be a fixed direction. We consider slice holomorphic functions of several complex variables in the unit ball, i.e.
we study functions which are analytic in intersection of every slice $\{z^0+t\mathbf{b}: t\in\mathbb{C}\}$ with the unit ball
$\mathbb{B}^n=\{z\in\mathbb{C}^{n}: \ |z|:=\sqrt{|z|_1^2+\ldots+|z_n|^2}<1\}$ for any
$z^0\in\mathbb{B}^n$. For this class of functions
there is considered the concept of boundedness of $L$-index in the direction $\mathbf{b},$ where
${L}: \mathbb{B}^n\to\mathbb{R}_+$ is a positive continuous function such that
$L(z)>\frac{\beta|\mathbf{b}|}{1-|z|}$ and $\beta>1$ is some constant.
There are presented sufficient conditions that the sum of slice holomorphic functions of bounded $L$-index in direction
belong this class. This class of slice holomorphic functions is closed under the operation of multiplication.
Посилання
2. A. Bandura, L. Shegda, O. Skaskiv, L. Smolovyk, Some criteria of boundedness of L-index in a direction for slice holomorphic functions in the unit ball, Internat. J. Appl. Math., 34 (2021), No4, 775-793. http://doi.org/10.12732/ijam.v34i4.13
3. A. Bandura, T. Salo, O. Skaskiv, Some criteria of boundedness of L-index in a direction for slice holomorphic functions in the unit ball, Mat Stud., 57 (2022), No1, 68–78. http://doi.org/10.30970/ms.57.1.68-78
4. A. Bandura, O. Skaskiv, Slice holomorphic functions in several variables with bounded L-index in direction, Axioms, 8 (2019), No3, Article ID: 88. http://doi.org/10.3390/axioms8030088
5. A. Bandura, O. Skaskiv, Functions analytic in the Unit ball having bounded L-index in a direction, Rocky Mountain J. Math., 49 (2019) No4, 1063–1092. doi: 10.1216/RMJ-2019-49-4-1063
6. A.I. Bandura, O.B. Skaskiv, I.R. Tymkiv, Composition of entire and analytic functions in the unit ball, Carpathian Math. Publ., 14 (2022), No1, 95–103. doi:10.15330/cmp.14.1.95-103
7. A.I. Bandura, Product of two entire functions of bounded L-index in direction is a function with the same class, Bukovyn. Mat. Zh., 4 (2016), No1-2, 8–12.
8. A.I. Bandura, Composition, product and sum of analytic functions of bounded L-index in directionthe unit ball, Mat. Stud., 50 (2018), No2, 115–134. http://doi.org/10.15330/ms.50.2.115-134
9. G.H. Fricke, Functions of bounded index and their logarithmic derivatives, Math. Ann., 206 (1973), 215–223.
10. G.H. Fricke, Entire functions of locally slow growth, J. Anal. Math., 28 (1975), No1, 101–122.
11. M.M. Sheremeta, On the l-index boundedness of some composition of functions, Mat. Stud., 47 (2017), No2, 207–210. http://doi.org/10.15330/ms.47.2.207-210
12. B. Lepson, Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index, in: Entire Functions and Related Parts of Analysis, J. Korevaar (ed.), Proceedings of Symposia in Pure Math., 11, Am. Math. Soc., Providence (1968), 298–307.
13. J.J. Macdonnell, Some convergence theorems for Dirichlet-type series whose coefficients are entire functions of bounded index, Doctoral dissertation, Catholic University of America, Washington, 1957.
14. F. Nuray, R.F. Patterson, Vector-valued bivariate entire functions of bounded index satisfying a system of differential equations, Mat. Stud., 49 (2018), No1, 67–74. http://doi.org/10.15330/ms.49.1.67-74
15. W.J. Pugh, Sums of functions of bounded index, Proc. Amer. Math. Soc., 22 (1969), 319–323. https,//doi.org/10.1090/S0002-9939-1969-0243067-9
16. M.N. Sheremeta, Entire functions and Dirichlet series of bounded l-index, Russian Math. (Iz. VUZ), 36 (1992), No9, 76–82.
17. M. Sheremeta, Analytic functions of bounded index, VNTL Publishers, Lviv, 1999.
18. S. Strelitz, Asymptotic properties of entire transcendental solutions of algebraic differential equations,
Contemp. Math., 25 (1983), 171–214. http://doi.org/10.1090/conm/025/730048
Авторське право (c) 2022 V.P. Baksa, A. I. Bandura, T.M. Salo
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.