On certain subclass of Dirichlet series absolutely convergent in half-plane
Анотація
Denote by $\mathfrak{D}_0$ a class of absolutely convergent in half-plane $\Pi_0=\{s\colon \text{Re}\,s<0\}$ Dirichlet series
$F(s)=e^{sh}-\sum_{k=1}^{\infty}f_k\exp\{s(\lambda_k+h)\},\, s=\sigma+it$, where $h> 0$, $h<\lambda_k\uparrow+\infty$ and $f_k>0$.
For $0\le\alpha<h$ and $l\ge 0$ we say that $F$ belongs to the class $\mathfrak{DF}_h(l,\alpha)$ if and only if
$\text{Re}\{e^{-hs}((1-l)F(s)+\frac{l}{h}F'(s))\}>\frac{\alpha}{h}$,
and belongs to the class $\mathfrak{DG}_h(l,\alpha)$ if and only if
$\text{Re}\{e^{-hs}((1-l)F'(s)+\frac{l}{h}F''(s))\}>\alpha$ for all $s\in \Pi_0$. It is proved
that $F\in \mathfrak{DF}_h(l,\alpha)$ if and only if $ \sum_{k=1}^{\infty}(h+l\lambda_k)f_k\le h-\alpha$, and
$F\in \mathfrak{DG}_h(l,\alpha)$ if and only if $\sum_{k=1}^{\infty}(h+l\lambda_k)(\lambda_k+h)f_k\le h(h-\alpha)$.
If $F_j\in \mathfrak{DF}_h(l_j,\alpha_j)$, $j=1, 2$, where $l_j\ge0$ and $0\le \alpha_j<h$, then Hadamard composition
$(F_1*F_2)\in \mathfrak{D}F_h(l,\alpha)$, where $l=\min\{l_1,l_2\}$ and
$\alpha=h-\frac{(h-\alpha_1)(h-\alpha_2)}{h+l\lambda_1}$. Similar statement is correct for the class $F_j\in \mathfrak{DG}_h(l,\alpha)$.
For $j>0$ and $\delta>0$ the neighborhood of the function $F\in \mathfrak{D}_0$ is defined as follows
$O_{j,\delta}(F)=\{G(s)=e^{s}-\sum_{k=1}^{\infty}g_k\exp\{s\lambda_k\}\in \mathfrak{D}_0\colon
\sum_{k=1}^{\infty}\lambda^j_k|g_k-f_k|\le\delta\}$. It is described the neighborhoods of functions from classes $\mathfrak{DF}_h(l,\alpha)$ and $\mathfrak{DG}_h(l,\alpha)$.
Conditions on real parameters $\gamma_0,\,\gamma_1,\,\gamma_2,\,a_1$ and $a_2$ of the differential equation
$w''+(\gamma_0e^{2hs}+\gamma_1e^{hs}+\gamma_2) w=a_1e^{hs}+a_2e^{2hs}$ are found, under which this equation has a solution
either in $\mathfrak{DF}_h(l,\alpha)$ or in $\mathfrak{DG}_h(l,\alpha)$.
Посилання
2. Aouf M.K., Darwish H.E. Basic properties and characterization of a certain class of analytic functions with negative coefficients, II// Utilitas Math. – 1994. – V.46. – P. 167–177.
3. Aouf M.K. A subclass of analytic p–valent functions with negative coefficients, I// Utilitas Math. – 1994. – V.46. – P. 219–231.
4. Altintas O. A subclass of analytic functions with negative coefficients// Hacettepe Bull. Natur. Sci. Engrg. – 1990.– V.19. – P. 15–24.
5. Altintas O. On a subclass of certain starlike functions with negative coefficients// Math. Japon. – 1991.– V.36. – P. 489–495.
6. Aouf M.K., Srivastava H.M. Certain families of analytic functions with negative coefficients// DMS-669-IR. – June 1994. – 49 p.
7. Aouf M.K., Hossen H.M., Srivastava H.M. A certain subclass of analytic p-valent functions with negative coefficients// Demonstratio Mathematica. – 1998. – V.51, No3. – P. 595–608.
8. Hadamard J. Theoreme sur le series entieres// Acta math. – 1899. – Bd.22. – S. 55–63.
9. Hadamard J. La serie de Taylor et son prolongement analitique // Scientia phys.– math. – 1901. – No12. – P. 43–62.
10. Bieberbach L. Analytische Fortzetzung – Berlin, 1955.
11. Korobeinik Yu.F., Mavrodi N.N. Singular points of the Hadamard composition// Ukr. Math. Journ. – 1990. – V.42, No12. – P. 1711–1713. (in Russian); Engl. transl.: Ukr. Math. Journ. – 1990. – V.42, No 12. P.1545-1547.
12. Zalzman L. Hadamard product of shlicht functions// Proc. Amer. Math. Soc. – 1968. – V.19, No3.P. 544–548.
13. Mogra M.L. Hadamard product of certain meromorphic univalent functions// J. Math. Anal. Appl.1991. – V.157. – P. 10–16.
14. Choi J.H., Kim Y.C., Owa S. Generalizations of Hadamard products of functions with negative coefficients// J. Math. Anal. Appl. – 1996. – V.199. – P. 495–501.
15. Aouf M.K., Silverman H. Generalizations of Hadamard products of meromorphic univalent functions with positive coefficients// Demonstratio Mathematica. – 2008. – V.51, No2. – P. 381–388.
16. Liu J., Srivastava P. Hadamard products of certain classes of p–valent starlike functions// RACSM.2019. – V.113. – P. 2001–205.
17. Ruscheweyh S. Neighborhoods of univalent functions// Proc. Amer. Math. Soc. –1981. – V.81, No4.P. 521–527.
18. Sheremeta M.M. Pseudostarlike Dirichlet series of the order α and the type β// Mat. Stud. – 2020.V.54, No1. – P. 23–31.
19. Goodman A.W. Univalent functions and nonanalytic curves// Proc. Amer. Math. Soc. –1957. – V.8.P. 598–601.
20. Fournier R. A note on neighborhoods of univalent functions// Proc. Amer. Math. Soc. –1983. – V.87, No1. – P. 117–121.
21. Silverman H. Neighborhoods of a class of analytic functions// Far East J. Math. Sci. – 1995. – V.3, No2. – P. 165–169.
22. Altintas O., Neighborhoods of certain analytic functions with negative coefficients// Internat. J. Math. and Math. Sci. – 1996. – V.13, No4. – P. 210–219.
23. Altintas O., Ozkan O., Srivastava H.M. Neighborhoods of a class of analytic functions with negative coefficients// Applied Math. Lettr. – 2000. – V.13. – P. 63–67.
24. Frasin B.A., Daras M. Integral means and neighborhoods for analytic functions with negative coefficients// Soochow Journal Math. – 2004. – V.30, No2. – P. 217–223.
25. Murugusundaramoorthy G., Srivastava H.M. Neighborhoods of certain classes of analytic functions of complex order// J. Inequal. Pure and Appl. Math. – 2004. – V.5, No2. – Article 24.
26. Pascu M.N., Pascu N.R. Neighborhoods of univalent functions// Bull. Amer. Math. Soc. – 2011. – V.83. – P. 510–219.
27. Shah S.M. Univalence of a function f and its successive derivatives when f satisfies a differential equation, II// J. Math. anal. and appl. – 1989. – V.142. – P. 422–430.
28. Sheremeta Z.M. Close-to-convexity of entire solutions of a differential equation// Mat. methods and fiz.-mech. polya. – 1999. – V.42, No3. – P. 31–35. (in Ukrainian)
29. Sheremeta Z.M. On properties of entire solutions of a differential equation// Diff. uravnyeniya. – 2000. – V.36, No8. – P. 1–6. (in Russian)
30. Sheremeta Z.M. On entire solutions of a differential equation// Mat. Stud. – 2000. – V.14, No1. – P. 54–58.
31. Sheremeta Z.M., Sheremeta M.M. Close-to-convexity of entire solutions of a differential equation// Diff. uravnyeniya. – 2002. – V.38, No4. – P. 435–440. (in Russian)
32. Holovata O.M., Mulyava O.M., Sheremeta M.M. Pseudostarlike, pseudoconvex and close-to-pseudoconvex Dirichlet series satisfying differential equations with exponential coefficients// Mat. method. and fiz.- mech. polya. – 2018 – V.61, No1. – P. 57–70.
33. Sheremeta M.M. Geometric properties of analytic solution of differential equations – Publisher I. E. Chyzhykov. – 2019. – 164 p.
34. Sheremeta M.M. Entire Dirichlet series . – K.:ISDO, 1993. (in Ukrainian)
35. Sheremeta M.M. On the derivative of an entire Dirichlet series// Math. USSR Sbornik. – 1990. – V.65, No1. – P.133–139.
Авторське право (c) 2022 M. M. Sheremeta
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.