The least dimonoid congruences on relatively free trioids

  • Anatolii Zhuchok Luhansk Taras Shevchenko National University

Анотація

When Loday and Ronco studied ternary planar trees, they introduced types of algebras,
called trioids and trialgebras. A trioid is a nonempty set equipped with three binary associative
operations satisfying additional eight axioms relating these operations, while a trialgebra is just
a linear analog of a trioid. If all operations of a trioid (trialgebra) coincide, we obtain the notion
of a semigroup (associative algebra), and if two concrete operations of a trioid (trialgebra)
coincide, we obtain the notion of a dimonoid (dialgebra) and so, trioids (trialgebras) are a
generalization of semigroups (associative algebras) and dimonoids (dialgebras). Trioids and
trialgebras have close relationships with the Hopf algebras, the Leibniz 3-algebras, the Rota-
Baxter operators, and the post-Jordan algebras. Originally, these structures arose in algebraic
topology. One of the most useful concepts in algebra is the free object. Every variety contains
free algebras and free objects in any variety of algebras are important in the study of that
variety. Loday and Ronco constructed the free trioid of rank 1 and the free trialgebra. Recently,
the free trioid of an arbitrary rank, the free commutative trioid, the free n-nilpotent trioid, the
free rectangular triband, the free left n-trinilpotent trioid and the free abelian trioid were
constructed and the least dimonoid congruences as well as the least semigroup congruence on
the first four free algebras were characterized. However, just mentioned congruences on free
left (right) n-trinilpotent trioids and free abelian trioids were not considered. In this paper, we
characterize the least dimonoid congruences and the least semigroup congruence on free left
(right) n-trinilpotent trioids and free abelian trioids.

Посилання

F. Bagherzadeha, M. Bremnera, S. Madariagab, Jordan trialgebras and post-Jordan algebras, J. Algebra, 486 (2017), 360–395.

L.A. Bokut, Y. Chen, C. Liu, Gröbner–Shirshov bases for dialgebras, Int. J. Algebra Comput., 20 (2010), No3, 391–415.

J.M. Casas, Trialgebras and Leibniz 3-algebras, Bol. Soc. Mat. Mex., 12 (2006), No2, 165–178.

K.J. Ebrahimi-Fard, Loday-type algebras and the Rota-Baxter relation, Lett. Math. Phys., 61 (2002), No2, 139–147.

J. Huang, Y. Chen, Gröbner–Shirshov bases theory for trialgebras, Mathematics, 9 (2021), 1207. doi: 10.3390/math9111207

P.S. Kolesnikov, V.Yu. Voronin, On special identities for dialgebras, Linear Multilinear Algebra, 61 (2013), No3, 377–391.

J.-L. Loday, Dialgebras. In: Dialgebras and related operads, Lect. Notes Math., Berlin: Springer-Verlag, 1763 (2001), 7–66.

J.-L. Loday, M.O. Ronco, Trialgebras and families of polytopes, Contemp. Math., 346 (2004), 369–398.

J.-C. Novelli, J.-Y. Thibon, Polynomial realizations of some trialgebras, In: 18th Conference on Formal Power Series and Algebraic Combinatoricas. San Diego, USA, (2006), 243–254.

J. Sanchez-Ortega, On the definitions of nucleus for dialgebras, J. Algebra, 392 (2013), No15, 244–264.

B.M. Schein, One-sided nilpotent semigroups, Uspekhi Mat. Nauk, 19(115) (1964), No1, 187–189. (in Russian)

A.V. Zhuchok, Free commutative trioids, Semigroup Forum, 98 (2019), No2, 355–368. doi: 10.1007/s00233-019-09995-y

A.V. Zhuchok, Free left n-dinilpotent doppelsemigroups, Commun. Algebra, 45 (2017), No11, 4960–4970. doi: 10.1080/00927872.2017.1287274

A.V. Zhuchok, Relatively free dimonoids and bar-units, Int. J. Algebra Comput., 31 (2021), No08, 1587–1599. doi: 10.1142/S0218196721500570

A.V. Zhuchok, The least dimonoid congruences on free n-nilpotent trioids, Lobachevskii J. Math., 41 (2020), No9, 1747–1753. doi: 10.1134/S199508022009036X

A.V. Zhuchok, Y.A. Kryklia, Free left n-trinilpotent trioids, Commun. Algebra, 49 (2021), No2, 467–481. doi: 10.1080/00927872.2020.1802472

A.V. Zhuchok, Yul.V. Zhuchok, Free left n-dinilpotent dimonoids, Semigroup Forum, 93 (2016), No1, 161–179. doi: 10.1007/s00233-015-9743-z

A.V. Zhuchok, Yul.V. Zhuchok, O.O. Odintsova, Free left k-nilpotent n-tuple semigroups, Bul. Acad. Stiinte Repub. Mold. Mat., 94 (2020), No3, 29–38.

A.V. Zhuchok, Yul.V. Zhuchok, Y.V. Zhuchok, Certain congruences on free trioids, Commun. Algebra, 47 (2019), No12, 5471–5481. doi: 10.1080/00927872.2019.1631322

Yul.V. Zhuchok, Free n-nilpotent trioids, Mat. Stud. 43 (2015), No1, 3–11.

Yul.V. Zhuchok, Free rectangular tribands, Bul. Acad. Stiinte Repub. Mold. Mat., 78 (2015), No2, 61–73.

Y.V. Zhuchok, Free abelian dimonoids, Algebra Discrete Math., 20 (2015), No2, 330–342.

Y.V. Zhuchok, Free abelian trioids, Algebra Discrete Math., 32 (2021), No1, 147–160. doi: 10.12958/adm1860

Y.V. Zhuchok, The endomorphism monoid of a free trioid of rank 1, Algebra Univers., 76 (2016), No3, 355–366. doi: 10.1007/s00012-016-0392-1

Опубліковано
2022-03-31
Як цитувати
Zhuchok, A. (2022). The least dimonoid congruences on relatively free trioids. Математичні студії, 57(1), 23-31. https://doi.org/10.30970/ms.57.1.23-31
Розділ
Статті