Fermat and Mersenne numbers in $k$-Pell sequence

  • B. Normenyo Department of Mathematics, University of Ghana
  • S. Rihane Department of Mathematics and Computer Sciences University Center Abdelhafid Boussouf Mila, Algeria
  • A. Togbe Department of Mathematics and Statistics Purdue University Northwest Westville, USA https://orcid.org/0000-0002-5882-936X

Анотація

For an integer $k\geq 2$, let $(P_n^{(k)})_{n\geq 2-k}$ be the $k$-generalized Pell sequence, which starts with $0,\ldots,0,1$ ($k$ terms) and each term afterwards is defined by the recurrence
$
P_n^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\cdots +P_{n-k}^{(k)},\quad \text{for all }n \geq 2.
$
For any positive integer $n$, a number of the form $2^n+1$ is referred to as a Fermat number, while a number of the form $2^n-1$ is referred to as a Mersenne number. The goal of this paper is to determine Fermat and Mersenne numbers which are members of the $k$-generalized Pell sequence. More precisely, we solve the Diophantine equation $P^{(k)}_n=2^a\pm 1$ in positive integers $n, k, a$ with $k \geq 2$, $a\geq 1$. We prove a theorem which asserts that, if the Diophantine equation $P^{(k)}_n=2^a\pm 1$ has a solution $(n,a,k)$ in positive integers $n, k, a$ with $k \geq 2$, $a\geq 1$, then we must have that $(n,a,k)\in \{(1,1,k),(3,2,k),(5,5,3)\}$. As a result of our theorem, we deduce that the number $1$ is the only Mersenne number and the number $5$ is the only Fermat number in the $k$-Pell sequence.

Біографії авторів

B. Normenyo, Department of Mathematics, University of Ghana

Department of Mathematics, University of Ghana

S. Rihane, Department of Mathematics and Computer Sciences University Center Abdelhafid Boussouf Mila, Algeria

Department of Mathematics and Computer Sciences
University Center Abdelhafid Boussouf
Mila, Algeria

A. Togbe, Department of Mathematics and Statistics Purdue University Northwest Westville, USA

Department of Mathematics and Statistics
Purdue University Northwest
Westville, USA

Посилання

A. Baker, H. Davenport, The equations $3x^2 - 2 = y^2$ and $8x^2 - 7 = z^2$, Q. J. Math., 20 (1969), 129–137.

J.J. Bravo, J.L. Herrera, Repdigits in generalized Pell sequences, Arch. Math. (Brno), 56 (2020), 249–262.

J.J. Bravo, J.L. Herrera, F. Luca, On a generalization of the Pell sequence, Math. Bohem., 146 (2021), №2, 199–213.

J.J. Bravo, F. Luca, On the Diophantine equation $F_n + F_m=2^a$, Quaest. Math., 39 (2016), 391–400.

J.J. Bravo, C.A. G´omez, F. Luca, Powers of two as sums of two k-Fibonacci numbers, Miskolc Math. Notes, 17 (2016), 85–100.

J.J. Bravo, F. Luca, Powers of two as sums of two Lucas numbers, J. Integer Seq., 17 (2014), Article 14.8.3.

J.J. Bravo, F. Luca, Powers of two in generalized Fibonacci sequences, Rev. Colombiana Mat., 46 (2012), 67–79.

Y. Bugeaud, F. Luca, M. Mignotte, S. Siksek, Fibonacci numbers at most one away from a perfect power, Elem. Math., 63 (2008), 65–75.

Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. of Math., 163 (2006), 969–1018.

A. Dujella, A. Peth¨o, A generalization of a theorem of Baker and Davenport, Q. J. Math., 49 (1998), 291–306.

A. Gueye, S. Rihane, A. Togb´e, Coincidence between k-Fibonacci numbers and products of two Fermat numbers, Bull. Braz. Math. Soc. (N.S.), (2021), doi: https://doi.org/10.1007/s00574-021-00269-2

B. Kafle, S. Rihane, A Togb´e, A note on Mersenne Padovan and Perrin numbers, The Notes on Number Theory and Discrete Mathematics, 27 (2021), 161–170.

A.Ya. Khinchin, Continued Fractions, Noordhoff, Groningen, 1963.

E. Kili¸c, On the usual Fibonacci and generalized order-k Pell numbers, Ars Combin., 88 (2008), 33–45.

E. Kili¸c, The Binet formula, sums and representations of generalized Fibonacci p-numbers, European J. Combin., 29 (2008), 701–711.

E. Kili¸c, D. Ta¸sci, The generalized Binet formula, representation and sums of the generalized order-k Pell numbers, Taiwanese J. Math., 10 (2006), 1661–1670.

E.M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II, Izv. Math., 64(6) (2000), 1217–1269.

S.G. Sanchez, F. Luca, Linear combinations of factorials and S-units in a binary recurrence sequence, Ann. Math. Qu´ebec, 38 (2014), 169–188.

B.M.M. de Weger, Algorithms for Diophantine equations, PhD Thesis, Eindhoven University of Technology, Eindhoven, the Netherlands, 1989.

Опубліковано
2021-12-26
Як цитувати
Normenyo, B., Rihane, S., & Togbe, A. (2021). Fermat and Mersenne numbers in $k$-Pell sequence. Математичні студії, 56(2), 115-123. https://doi.org/10.30970/ms.56.2.115-123
Розділ
Статті