Finite M/M/1 retrial model with changeable service rate

  • M.S. Bratiichuk Silesian University of Technology Gliwice, Poland
  • A.A. Chechelnitsky Taras Shevchenko National University Kyiv, Ukraine
  • I.Ya. Usar Taras Shevchenko National University Kyiv, Ukraine

Анотація

The article deals with M/M/1 -type retrial queueing system with finite orbit. It is supposed
that service rate depends on the loading of the system. The explicit formulae for ergodic
distribution of the number of customers in the system are obtained. The theoretical results are
illustrated by numerical examples.

Біографії авторів

M.S. Bratiichuk, Silesian University of Technology Gliwice, Poland

Silesian University of Technology
Gliwice, Poland

A.A. Chechelnitsky, Taras Shevchenko National University Kyiv, Ukraine

Taras Shevchenko National University
Kyiv, Ukraine

I.Ya. Usar, Taras Shevchenko National University Kyiv, Ukraine

Taras Shevchenko National University
Kyiv, Ukraine

Посилання

J.R. Artalejo, A. Gomes-Corral, Retrial queueing systems. Computational Approach, Springer-Verlag, 2008.

J.R. Artalejo, Accessible bibliography on retrial queue, Math. Comput. Modell., 30 (1999), 1–6.

G.I. Falin, J.G.C. Templeton, Retrial queues, London Chapman & Hall., 1997.

L. Kosten, Stochastic theory of service systems, Pergamon press, Oxford, 1973.

J. Warland, An introduction to queueing networks, Prentice Hall, 1988.

M.S. Bratiichuk, A.A. Chechelnitsky, I.Ja. Usar, M/M/1 Retrial queueing system with variable service rate, Ukrainian Mathematical Journal, 72 (2020), 403–415.

Z. Xuelu, W. Jinting, M. Qing, Optimal design for a retrial queueing system with state-dependent service rate, Journal of Systems Science and Complexity, 30 (2017), 883–900.

Опубліковано
2021-10-23
Як цитувати
Bratiichuk, M., Chechelnitsky, A., & Usar, I. (2021). Finite M/M/1 retrial model with changeable service rate. Математичні студії, 56(1), 96-102. https://doi.org/10.30970/ms.56.1.96-102
Розділ
Статті