Dominating polynomial in power series expansion for analytic functions in a complete Reinhardt domain

  • A. I. Bandura Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine
  • T.M. Salo Lviv Polytechnic National University, Lviv, Ukraine
Keywords: analytic function, partial derivative, complete Reinhardt domain, multiple circular domain, dominating polynomial, main polynomial, bounded L-index in joint variables

Abstract

We generalized some criteria of boundedness of $\mathbf{L}$-index in joint variables for analytic functions in a complete multiple circular domain,  where $\mathbf{L}(z)=(l_1(z_1,z_2,\ldots,z_n),$ $l_{2}(z_1,z_2,\ldots,z_n),$ $\ldots,$ $l_{n}(z_1,z_2,\ldots,z_n)),$  $l_j \colon \mathbb{G}\to \mathbb{R}_+$ is a  continuous function,  $\mathbb{G}$ is the  $n$-dimensional complete multiple circular domain in $\mathbb{C}^n,$ i.e.  for every point $(z_1,\dots,z_n)$ from this domain $\mathbb{G}$ and for each $r_j\in[0,1],$ $\theta\in[0,2\pi],$ $j\in\{1,2,\ldots,n\},$ the point-wise product $(r_1z_1,\dots,r_nz_n)$ belongs to the same domain $\mathbb{G}$ and the component-wise rotation $(z_1e^{i\theta_1},\ldots, z_ne^{i\theta_n})$ falls into this domain $\mathbb{G}.$ The propositions describe a behavior of multiple power series expansion on a skeleton of a polydisc. There are presented estimation of power series expansion modulus by a dominating homogeneous polynomial with the degree that does not exceed some number depending only from radii of polydisc. Changing the center of the polydisc, we cover the whole domain $\mathbb{G}.$Replacing universal quantifier by existential quantifier for radii of bidisc, we also proved sufficient conditions of boundedness of  $\mathbf{L}$-index in joint variables for analytic functions which are weaker than necessary conditions.

Author Biographies

A. I. Bandura, Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine

Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine

T.M. Salo, Lviv Polytechnic National University, Lviv, Ukraine

Lviv Polytechnic National University, Lviv, Ukraine

References

V.P. Baksa, Analytic vector-functions in the unit ball having bounded L-index in joint variables, Carpathian Math. Publ., 11 (2019), №2, 213–227. https://doi.org/10.15330/cmp.11.2.213-227

V.P. Baksa, A.I. Bandura, O.B. Skaskiv, On existence of main polynomial for analytic vector-valued functions of bounded L-index in the unit ball, Bukovinian Math. Journal, 7 (2019), №2, 6–13. https://doi.org/10.31861/bmj2019.02.006

V. Baksa, A. Bandura, O. Skaskiv, Growth estimates for analytic vector-valued functions in the unit ball having bounded L-index in joint variables, Constructive Mathematical Analysis, 3 (2020), №1, 9–19. https://doi.org/10.33205/cma.650977

A. Bandura, T. Salo, O. Skaskiv, Analytic Functions in a Complete Reinhardt Domain Having Bounded L-Index in Joint Variables, Symmetry, 16 (2024), №3, 351. https://doi.org/10.3390/sym16030351

A. Bandura, N. Petrechko, Properties of power series expansion of entire function of bounded L-index in joint variables, Visn. Lviv Un-ty, Ser. Mech. Math., 82 (2016), 27–33. http://publications.lnu.edu.ua/bulletins/index.php/mmf/article/view/7266/7272

A.I. Bandura, N.V. Petrechko, Properties of power series of analytic in a bidisc functions of bounded L-index in joint variables, Carpathian Math. Publ., 9 (2017), №1, 6–12. https://dx.doi.org/10.15330/cmp.9.1.6-12

A. Bandura, N. Petrechko, O. Skaskiv, Maximum modulus in a bidisc of analytic functions of bounded L-index and an analogue of Hayman’s theorem, Mat. Bohemica, 143 (2018), №4, 339–354. https://doi.org/10.21136/MB.2017.0110-16

A.I. Bandura, T.M. Salo, Uniform estimates for local properties of analytic functions in a complete Reinahrdt domain, Mat. Stud., 61 (2024), №2, 168–175. https://doi.org/10.30970/ms.61.2.168-175

A. Bandura, O. Skaskiv, Functions analytic in a unit ball of bounded L-index in joint variables, J. Math. Sci., 227 (2017), №1, 1–12. https://doi.org/10.1007/s10958-017-3570-6

A. Bandura, O. Skaskiv, L. Smolovyk, Slice holomorphic solutions of some directional differential equations with bounded L-index in the same direction, Demonstr. Math., 52 (2019), №1, 482–489. https://doi.org/10.1515/dema-2019-0043

T. Beberok, Explicit formulas of the Bergman kernel for some Reinhardt domains, J. Geom. Anal., 26 (2016), №4, 2883–2892. https://doi.org/10.1007/s12220-015-9652-0.

G. Cho, Comparing the Caratheodory Pseudo-Distance and the Kahler–Einstein Distance on Complete Reinhardt Domains, Asian J. Math., 26 (2022), №1, 37–44. https://doi.org/10.4310/AJM.2022.V26. N1.A2.

Q. Fu, G. Deng, The weighted reproducing kernels of the Reinhardt domain, Compl. Var. Ell. Equ., 69 (2024), №12, 2048–2065. https://doi.org/10.1080/17476933.2023.2272131

A.A. Gol’dberg, M.N. Sheremeta, Existence of an entire transcendental function of bounded l-index, Mathematical Notes, 57 (1995), №1, 88–90. https://doi.org/10.1007/BF02309399

W.K. Hayman, Differential inequalities and local valency, Pacific J. Math., 44 (1973), №1, 117–137. https://doi.org/10.2140/pjm.1973.44.117

A.O. Kuryliak, S.I. Panchuk, O.B. Skaskiv, Bitlyan-Gol’dberg type inequality for entire functions and diagonal maximal term, Mat. Stud., 54 (2020), №2, 135–145. https://doi.org/10.30970/MS.54.2.135-145

A. Kuryliak, O. Skaskiv, Wiman’s type inequality in multiple-circular domain, Axioms, 10 (2021), №4, 0438. https://doi.org/10.3390/axioms10040348

A.O. Kuryliak, O.B Skaskiv, Wiman-type inequality in multiple-circular domains: Levy’s phenomenon and exceptional Sets, Ukr. Math. J., 74 (2022), №5, 743–756. https://doi.org/10.1007/s11253-022-02098-y

F. Nuray, Bounded index and four dimensional summability methods, Novi Sad Journal of Mathematics, 49 (2019), №2, 73–85. https://doi.org/10.30755/NSJOM.08285

F. Nuray, R.F. Patterson, Entire bivariate functions of exponential type, Bull. Math. Sci., 5 (2015), №2, 171–177. https://doi.org/10.1007/s13373-015-0066-x

R. Patterson, F. Nuray, A characterization of holomorphic bivariate functions of bounded index, Mathematica Slovaca, 67 (2017), №3, 731–736. https://doi.org/10.1515/ms-2017-0005

T.M. Salo, Hayman’s theorem for analytic functions in a complete Reinhardt domain, Mat. Stud., 63 (2025), №2, 129–135. https://doi.org/10.30970/ms.63.2.129-135

M.M. Sheremeta, To the boundedness of the ℓ − M-index of functions analytic in the unit disk and represented by series in systems of functions, Open J. Math. Anal., 9 (2025), №2, 19–25. https://doi.org/10.30538/psrp-oma2025.0162

M. Sheremeta, On boundedness of the l −M-Index of entire functions represented by series in a system of functions, Ukr. Math. J., 76 (2024), №4, 599–606. https://doi.org/10.1007/s11253-024-02346-3

M.M. Sheremeta, Y.S. Trukhan, Properties of analytic solutions of three similar differential equations of the second order, Carpathian Math. Publ., 13 (2021), №2, 413–425. https://doi.org/10.15330/CMP.13.2.413-425.17

M.M. Sheremeta, Y.S. Trukhan, Properties of analytic solutions of a differential equation, Mat. Stud., 52 (2019), №2, 138–143. doi:10.30970/ms.52.2.138-143

M.M. Sheremeta, Y.S. Trukhan, On a generalization of some Shah equation, Carpathian Math. Publ., 16 (2024), №1, 259–266. https://doi.org/10.15330/cmp.16.1.259-266

M.M. Sheremeta, Y.S. Trukhan, Starlike and convexity properties for P-valent solutions of the Shah differential equation, Mat. Stud,, 48 (2017), №1, 14–23. https://doi.org/10.15330/ms.48.1.14-23

Z.M. Sheremeta, M.M. Sheremeta, Properties of entire solutions of differential equations, Ukr. Math. J., 58 (2006), №12, 1924–1934. https://doi.org/10.1007/s11253-006-0177-3

X. Sima, Z. Tu, L. Xiong, Some results of homogeneous expansions for a class of biholomorphic mappings defined on a Reinhardt domain in $mathbb{C}^n$, Demonstr. Math., 56 (2023), №1, 20220242. https://doi.org/10.1515/dema-2022-0242

O.B. Skaskiv, On the Polya conjecture concerning the maximum and minimum of the modulus of an entire function of finite order given by a lacunary power series, Anal. Math., 16 (1990), №2, 143–157. https://doi.org/10.1007/BF01907542

J. Wang, Y. Zhang, The boundary Schwarz lemma and the rigidity theorem on Reinhardt domains $B^n_p$ of $mathbb{C}^n$, Acta Math. Sci., 44 (2024), №2, 839–850. https://doi.org/10.1007/s10473-024-0304-y

Published
2025-09-22
How to Cite
Bandura, A. I., & Salo, T. (2025). Dominating polynomial in power series expansion for analytic functions in a complete Reinhardt domain. Matematychni Studii, 64(1), 42-48. https://doi.org/10.30970/ms.64.1.42-48
Section
Articles