Algebraic bases of some algebras of polynomials on Banach spaces

  • R. V. Ponomarov Vasyl Stefanyk Carpathian National University, Ivano-Frankivsk, Ukraine
  • T. V. Vasylyshyn Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
Keywords: algebraic basis, polynomial on Banach space, symmetric function, complexification of real Banach space, space of Lebesgue integrable functions

Abstract

The work is devoted to the study of algebraic bases of algebras of continuous polynomials on real and complex Banach spaces. A subset of an algebra is called an algebraic basis if every element of the algebra can be  uniquely represented as a linear combination of products of powers of elements of the subset. Algebras of symmetric continuous polynomials on Banach spaces with some symmetric structure are typically equipped with finite or countable algebraic bases, which is important in the investigations of the respective algebras of  symmetric analytic functions. Explicit constructions of such algebraic bases are often available when the Banach
spaces are complex. In this work, we develop a method for extending these results to the case of real versions of such spaces. We also apply this method to the algebra of symmetric continuous  polynomials on the Cartesian product of real Banach spaces of absolutely Lebesgue integrable
in some powers functions on [0, 1].

Author Biographies

R. V. Ponomarov, Vasyl Stefanyk Carpathian National University, Ivano-Frankivsk, Ukraine

Vasyl Stefanyk Carpathian National University, Ivano-Frankivsk, Ukraine

T. V. Vasylyshyn, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine

Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine

References

A. Bandura, V. Kravtsiv, T. Vasylyshyn, Algebraic basis of the algebra of all symmetric continuous polynomials on the Cartesian product of $ell_p$-spaces, Axioms, 11 (2022), №2, 41. doi:10.3390/axioms11020041

I.V. Burtnyak, Yu.Yu. Chopyuk, S.I. Vasylyshyn, T.V. Vasylyshyn, Algebras of weakly symmetric functions on spaces of Lebesgue measurable functions, Carpathian Math. Publ., 15 (2023), №2, 411–419. doi:10.15330/cmp.15.2.411-419

J. Bochnak, J. Siciak, Polynomials and multilinear mappings in topological vector spaces, Studia Mathematica, 39 (1971), 59–76.

I. Chernega, M. Martsinkiv, T. Vasylyshyn, A. Zagorodnyuk, Applications of supersymmetric polynomials in statistical quantum physics, Quantum Reports, 5 (2023), №4, 683–697. doi:10.3390/quantum5040043

I. Chernega, R. Dmytryshyn, V. Kravtsiv, T. Vasylyshyn, A. Zagorodnyuk, Function calculus on rings of multisets associated with symmetric and supersymmetric polynomials, Carpathian Math. Publ., 17 (2025), №1, 187–199. doi:10.15330/cmp.17.1.187-199

Yu. Chopyuk, T. Vasylyshyn, A. Zagorodnyuk, Rings of multisets and integer multinumbers, Mathematics. 10 (2022), №5, 778. doi:10.3390/math10050778

P. Galindo, T. Vasylyshyn, A. Zagorodnyuk, The algebra of symmetric analytic functions on $L_infty$, Proc. Roy. Soc. Edinburgh Sect. A., 147 (2017), №4, 743–761. doi:10.1017/S0308210516000287

M. Gonzalez, R. Gonzalo, J. A. Jaramillo, Symmetric polynomials on rearrangement invariant function spaces, J. Lond. Math. Soc., 59 (1999), №2, 681–697. doi:10.1112/S0024610799007164

O.V. Handera-Kalynovska, V.V. Kravtsiv, The Waring-Girard formulas for symmetric polynomials on spaces $ell_p,$, Carpathian Math. Publ., 16 (2024), №2, 407–413. doi:10.15330/cmp.16.2.407-413

R. Hryniv, V. Kravtsiv, T. Vasylyshyn, A. Zagorodnyuk, Symmetric and supersymmetric polynomials on $ell_p,$ and partition functions in quantum statistical physics, Physica Scripta, 100 (2025), №7, 075208. doi:10.1088/1402-4896/adde1e

V. Kravtsiv, T. Vasylyshyn, A. Zagorodnyuk, On algebraic basis of the algebra of symmetric polynomials on $ell_p(mathbb{C}^n)$, J. Funct. Spaces, 2017 (2017), 4947925, 8 p. doi:10.1155/2017/4947925

J. Mujica, Complex analysis in Banach spaces, North Holland, 1986.

G.A. Munoz, Y. Sarantopoulos, A. Tonge, Complexifications of real Banach spaces, polynomials and multilinear maps, Studia Mathematica, 134 (1999), №1, 1–33. doi:10.4064/sm-134-1-1-33

Z. Novosad, S. Vasylyshyn, A. Zagorodnyuk, Countably generated algebras of analytic functions on Banach spaces, Axioms, 12 (2023), №8, 798. doi:10.3390/axioms12080798

R.V. Ponomarov, T.V. Vasylyshyn, Symmetric polynomials on Cartesian products of Banach spaces of Lebesgue integrable functions, Carpat. Math. Publ. 17 (2025), №2, 483–515. doi:10.15330/cmp.17.2.483-515

S.I. Vasylyshyn, Spectra of algebras of analytic functions, generated by sequences of polynomials on Banach spaces, and operations on spectra, Carpathian Math. Publ., 15 (2023), №1, 104–119. doi:10.15330/cmp.15.1.104-119

T.V. Vasylyshyn, Isomorphisms of algebras of symmetric functions on spaces $ell_p$, Mat. Stud., 63 (2025), №1, 77–87. doi:10.30970/ms.63.1.77-87

T.V. Vasylyshyn,M.M. Varvariuk, I.I. Nykorovych, R.V. Ponomarov, Symmetric polynomials on Cartesian products of real Banach spaces of absolutely summable sequences, Precarpat. Bull. of The Shevchenko Sci. Soc. Number, 20(76) (2025), 24–38. (in Ukrainian) doi: 10.31471/2304-7399-2025-20(76)-24-38

T.V. Vasylyshyn, Symmetric functions on spaces $ell_{p}(mathbb{R}^{n})$ and $ell_{p}(mathbb{C}^{n})$, Carpathian Math. Publ., 12 (2020), №1, 5–16. doi:10.15330/cmp.12.1.5-16

T.V. Vasylyshyn, A.V. Zagorodnyuk, Symmetric polynomials on the Cartesian power of the real Banach space $L_infty[0,1]$, Mat. Stud., 53 (2020), №2, 192–205. doi:10.30970/ms.53.2.192-205

T. Vasylyshyn, A. Zagorodnyuk, The space of continuous linear functionals on $ell_1$ approximated by weakly symmetric continuous linear functionals, Symmetry, 17 (2025), №2, 206. doi:10.3390/sym17020206

A. Zagorodnyuk, N. Baziv, Y. Chopyuk, T. Vasylyshyn, I. Burtnyak, V. Kravtsiv, Symmetric and supersymmetric polynomials and their applications in the blockchain technology and neural networks, Proceedings of 2023 IEEE World Conference on Applied Intelligence and Computing (AIC), Sonbhadra, India. (2023), 508–513. doi:10.1109/AIC57670.2023.10263936

Published
2025-09-22
How to Cite
Ponomarov, R. V., & Vasylyshyn, T. V. (2025). Algebraic bases of some algebras of polynomials on Banach spaces. Matematychni Studii, 64(1), 81-91. https://doi.org/10.30970/ms.64.1.81-91
Section
Articles