An analog of the Hille theorem for hypercomplex functions in a finite-dimensional commutative algebra

  • S. A. Plaksa Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine
  • V. S. Shpakivskyi Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine
  • M. V. Tkachuk Institute of Mathematics of NAS of Ukraine Kyiv, Ukraine
Keywords: commutative Banach algebra, monogenic function, analytic function

Abstract

We prove that a locally bounded and differentiable in the sense of Gâteaux function given in a finite-dimensional commutative Banach algebra over the complex field is also differentiable in the sense of Lorc and it is a monogenic function. The algebra $\mathbb{A}_n^m$ has the Cartan basis for which the first $m$ basic  vectors $I_1,$ $I_2,$ $\ldots,$ $I_m$ are idempotents, and next $n-m$ basis vectors $I_{m+1},I_{m+2},\dots,I_n$ are nilpotent elements.
Every locally bounded and differentiable in the sense of Gâteaux function $\Phi\colon  \Omega\rightarrow\mathbb{A}_n^m$ can be represented in the form of linear combination of these idempotents, nilpotents and corresponding Cauchy-type integrals.

Author Biographies

S. A. Plaksa, Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine

Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine

V. S. Shpakivskyi, Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine

Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine

M. V. Tkachuk, Institute of Mathematics of NAS of Ukraine Kyiv, Ukraine

Institute of Mathematics of NAS of Ukraine
Kyiv, Ukraine

References

S.A. Plaksa, V.S. Shpakivskyi, Monogenic functions in spaces with commutative multiplication and applications, Frontiers in Mathematics, Birkhauser, Cham, 2023. https://doi.org/10.1007/978-3-031-32254-9

M. Frechet, La notion de diff´erentielle dans l’analyse generate, Ann. Ecole Norm. Sup., 42 (1925), №3, 293–323. https://doi.org/10.24033/asens.766

R. Gateaux, Fonctions dune infinite des variables independantes, Bull. Soc. Math. France, 47 (1919), 70–96. https://doi.org/10.24033/bsmf.995

E. Hille, Topics in the Theory of Semigroups, Colloquium Lectures, 1944.

E. Hille, R.S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc., Providence, R.I., 1957.

G. Scheffers, Verallgemeinerung der grundlagen der gew¨ohnlich complexen fuktionen, I. Ber. Verh. Sachs. Akad. Wiss. Leipzig Mat.-Phys. Kl., 45 (1893), 828–848.

E.R. Lorch, The theory of analytic function in normed abelian vector rings, Trans. Amer. Math. Soc., 54 (3) (1943), 414–425. https://doi.org/10.1090/S0002-9947-1943-0009090-0

I.P. Mel’nichenko, The representation of harmonic mappings by monogenic functions, Ukr. Math. J., 27 (1975), №5, 499–505. https://doi.org/10.1007/BF01089142

S.A. Plaksa, On differentiable and monogenic functions in a harmonic algebra, Zb. Pr. Inst. Mat. NAN Ukr., 14 (2017), №1, 210–221. https://trim.imath.kiev.ua/index.php/trim/article/download/114/103/338

E. Cartan, Les groupes bilineares et les systemes de nombres complexes, Annales de la faculte des sciences de Toulouse, 12 (1998), №1, 1–64.

S.A. Plaksa, R.P. Pukhtaievych, Constructive description of monogenic functions in n-dimensional semisimple algebra, An. St. Univ. Ovidius Constanta, 22 (2014), №1, 221–235. https://doi.org/10.2478/auom-2014-0018

V. Shpakivskyi, Constructive description of monogenic functions in a finite-dimensional commutative associative algebra, Adv. Pure Appl. Math., 7 (2016), №1, 63–75. https://doi.org/10.1515/apam-2015-0022

V. Shpakivskyi, Monogenic functions in finite-dimensional commutative associative algebras, Zb. Pr. Inst. Mat. NAN Ukr., 12 (2015), №3, 251–268. https://trim.imath.kiev.ua/index.php/trim/article/view/176

V.S. Shpakivskyi, Integral theorems for monogenic functions in commutative algebras, Zb. Pr. Inst. Mat. NAN Ukr., 12 (2015), №4, 313–328. https://trim.imath.kiev.ua/index.php/trim/article/view/308

E. Goursat, Cours danalyse mathematique, V.2, Gauthier–Villars, Paris, 1910.

Ju.Ju. Trokhimchuk, Continuous mappings and conditions of monogeneity, Israel Program for Scientific Translations, Jerusalem., Daniel Davey & Co. Inc., New York, 1964.

F. Sommen, Spherical monogenic functions and analytic functionals on the unit sphere, Tokyo J. Math., 4 (1981), №2, 427–456. https://doi.org/10.3836/tjm/1270215166

J. Ryan, Dirac operators, conformal transformations and aspects of classical harmonic analysis, J. Lie Theory, 8 (1998), №1, 67–82.

M.V. Tkachuk, S.A. Plaksa, An analog of the Menchov–Trokhimchuk theorem for monogenic functions in a three-dimensional commutative algebra, Ukr. Math. J., 73 (2022), №8, 1299–1308. https://doi.org/10.1007/s11253-022-01991-w

G. Tolstoff, Sur les fonctions bornees verifiant les conditions de Cauchy–Riemann, Rec. Math. [Mat. Sbornik] N.S., 10(52) (1942), №1–2, 79–85.

Published
2025-09-22
How to Cite
Plaksa, S. A., Shpakivskyi, V. S., & Tkachuk, M. V. (2025). An analog of the Hille theorem for hypercomplex functions in a finite-dimensional commutative algebra. Matematychni Studii, 64(1), 32-41. https://doi.org/10.30970/ms.64.1.32-41
Section
Articles