Free products of topological groups and $M$-equivalence
Abstract
In the paper we apply free products of topological groups for investigating the $M$-equivalence of Tychonoff spaces which are infinite disjoint sums of its subspaces. The main result is the following:
Let $X=\overset{\infty}{\underset{i=1}{\oplus}}X_{i}$ and for every $i\in \mathbb N$ there exists a topological group $G_{i}$ such that $F(X_{i+1})$ is topologically isomorphic to the free product $F(X_{i})$ and $G_{i}$.
Let $\{ n_{k} \}_{k=1}^{\infty}$ be an~increasing sequence of the natural numbers and let $\tilde{X}=\overset{\infty}{\underset{k=1}{\oplus}}X_{n_{k}}$. Then $X\overset{M}{\sim }\tilde{X}$.
This theorem give us many examples of topological spaces with topologically isomorphic free topological groups.
We use obtained results for constructing M-equivalent pairs and M-equivalent bundles of such spaces.
References
J.A. Anderson, Discrete Mathematics with Combinatorics, Prentice Hall, Upper Saddle River, New Jersey, 2001.
A.V. Arhangel’skii, M.G. Tkachenko, Topological Groups and Related Structures, Atlantis Press, Amsterdam-Paris, Holland, 2008.
K. Borsuk, Theory of retracts. Monogr. Matem., V.44, Panstwowe Wydawnictwo Naukowe, Warsaw, Poland, 1967.
J. Brazas, S. Emery, Free quasitopological groups, Topol. Appl., 236 (2023), 1–17.
Z. Cai, S. Lin, MP-equivalence of free paratopological groups, Topol. Appl., 215 (2017), 35–44.
M.I. Graev, Free topological groups, Amer. Math. Soc. Transl., 8 (1962), 305–364.
I.J. Guran, M.M. Zarichniy, Elements of the theory of topological groups, Kyiv, 1991. (in Ukrainian)
S.A. Morris, Free products of topological groups, Bull. Austral. Math. Soc., 4 (1971), 17–29, Corrigendum. Bull. Austral. Math. Soc., 12 (1975), 480.
O.G. Okunev, A method for consructing examples of M-equivalent spaces, Topol. Appl., 36 (1990), 157–171. Correction: Topol. Appl., 49 (1993), 191–192.
N.M. Pyrch, Generalized retracts concerned with topological groups, Visnyk NU Lviv. Politechn., fiz.-mat. series, 601 (2007), 54–58. (in Ukrainian)
N.M. Pyrch, Generalized retracts and isomorphisms of the free topological groups, Mat. Stud., 33 (2010), №1, 29–38. (in Ukrainian)
N.M. Pyrch, On Markov equivalence of the bundles of Tychonoff spaces 4: isomorphic classification, Visn. Lviv. Un-tu, Ser. Mekh.-Math., 88 (2019), №2, 38–46. (in Ukrainian)
Copyright (c) 2025 N. M. Pyrch

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.