Arbitrary random variables and Wiman's inequality for analytic functions in the unit disc
Abstract
We consider the class $\mathcal{A}(\varphi,\beta)$ of random analytic functions in the unit disk $\mathbb{C}=\{z\colon |z|<1\}$ of the form $f(z,\omega)=f(z,\omega_1,\omega_2)=\sum_{n=0}^{+\infty} R_n(\omega_1)\xi_n(\omega_2)a_nz^n,$ where $a_n\in\mathbb{C}\colon \lim\limits_{n\to+\infty}\sqrt[n]{|a_n|}=1,$ $\big(R_n(\omega)\big)$ is the Rademacher sequence, $\big(\xi_n(\omega)\big)$ is a sequence of complex-valued random variables (denote by $\Delta_{\varphi}$) such that there exists a constant $\beta>0$ and a function $\varphi(N,\beta)\colon\mathbb{N}\times\mathbb{R}_+\to[1;+\infty)$ non-decreasing by $N$ and $\beta$ for which $\displaystyle \Bigl(\mathbf{E}\Bigl(\max_{0\leq n\leq N}|\xi_n|^{\beta}\Bigl)\Bigl)^{1/\beta}\asymp\varphi(N,\beta),\ \ N\to+\infty,\ \ \alpha=\varlimsup_{N\to+\infty}\frac{\ln\varphi(N,\beta)}{\ln N}<+\infty,$ $\displaystyle (\exists \gamma>0)(\exists n_0\in\mathbb{N})\colon \sup\{ \mathbf{E}|\xi_n|^{-\gamma}\colon\ n\geq n_0\}<+\infty.$ By $\mathcal{A}_1(\varphi,\beta)$ we denote the class of random analytic functions in $\mathbb{D}$ of the form $f(z,\omega)=\sum_{n=0}^{+\infty} \xi_n(\omega)a_nz^n,$ where a sequence $\big(\xi_n(\omega)\big)\in\Delta_\varphi$ and, in particular, may be not sub-gaussian and not independent. In the paper, there are proved the following statements: Let $\delta>0.$ 1) Theorem 3: For $f\in\mathcal{A}(\varphi,\beta)$ there exist $r_0(\omega)>0$, a set $E(\delta)\subset(0;1)$ of finite logarithmic measure such that for all $r\in(r_0(\omega);1)\backslash E$ we have with probability $p\in(0;1)$ $\displaystyle M_f(r,\omega) \leq\frac{\mu_f(r)}{(1-p)^{1/\beta}}\varphi(N(r),\beta)\Big((1-r)^{-2}\cdot \ln\frac{\mu_f(r)\varphi(N(r),\beta)}{(1-p)(1-r)}\Big)^{1/4+\delta}. $ 2) Theorem 4: For a function $f\in\mathcal{A}_1(\varphi,\beta)$ there exist $r_0(\omega)>0$, a set $E(\delta)\subset(0;1)$ of finite logarithmic measure such that for all $r\in(r_0(\omega);1)\backslash E$ we get with probability $p\in(0;1)$ $\displaystyle M_f(r,\omega) \leq\frac{\mu_f(r)}{(1-p)^{1/\beta}}\varphi(N(r),\beta)\Big((1-r)^{-2}\cdot \ln\frac{\mu_f(r)\varphi(N(r),\beta)}{(1-p)(1-r)}\Big)^{1/2+\delta}. $References
T. Kővari, On the maximum modulus and maximal term of functions analytic in the unit disc, J. London Math. Soc. (2), 41 (1966), 129–137. https://doi.org/10.1112/jlms/s1-41.1.129
N.M. Suleimanov, Estimates of Wiman–Valiron type for power series with finite radius of convergence, and their sharpness, DAN USSR, 253 (1980), No4, 822–824.
P.V. Filevych Wiman-Valiron type estimates for random analytical functions in the unit disc, Integral transformations and its applications to value boundary problems. Kyiv, Inst. Math., 15 (1997), 227–238.
O.B. Skaskiv, A.O. Kuryliak, Direct analogues of Wiman’s inequality for analytic functions in the unit disc, Carpathian Math. Publ., 2 (2010), No1, 109–118.
A.O. Kuryliak, O.B. Skaskiv, Wiman’s type inequality for analytic and entire functions and h-measure of an exceptional sets, Carpathian Math. Publ., 12 (2020), No2, 492–498. https://doi.org/10.15330/cmp.12.2.492-498
A.O. Kuryliak, O.B. Skaskiv, Arbitrary random variables and Wiman’s inequality for entire functions, Axioms, 2024 (submited).
A.O. Kuryliak, O.B. Skaskiv, O.V. Zrum, Levy’s phenomenon for entire functions of several variables, Ufa Math. J., 6 (2014), 118–127. https://doi.org/10.13108/2014-6-2-111
A.O. Kuryliak, L.O. Shapovalovska, O.B. Skaskiv, Wiman’s type inequality for analytic functions in the polydisc, Ukr. Mat. J., 68 (2016), No1, 78–86.
J.P. Kahane, Some random series of functions, Cambridge University Press, 1985, 305 p. https://doi.org/10.1017/S0013091500017521
A. Kuryliak, Subnormal independent random variables and Levy’s phenomenon for entire functions, Mat. Stud., 47 (2017), No1, 10–19. https://doi.org/10.15330/ms.47.1.10-19
P.V. Filevych, Correlation between the maximum modulus and maximal term of random entire functions, Mat. Stud., 7 (1997), No2, 157–166.
R. Vershynin, High-dimensional probability, V.47, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, 2024. https://doi.org/10.1017/9781108231596
Copyright (c) 2024 A. O. Kuryliak, M. R. Kuryliak, O. M. Trusevych
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.