Symmetric linear functionals on the Banach space generated by pseudometrics
Abstract
In this work we consider the notion of $B$-equivalence of pseudometrics.
Two pseudometrics $d_1$ and $d_2$ on a set $X$ are called $B$-equivalent, where $B$ is a subgroup of the group of all bijections on $X,$ if there exists an element $b$ of $B$ such that $d_1(x,y) = d_2(b(x),b(y))$ for every $x,y\in X,$ that is, $d_1$ can be obtained from $d_2$ by permutating elements of $X$ with the aid of the bijection $b.$
The group $B$ generates the group $\widehat B$ of transformations of the set of all pseudometrics
on $X,$ elements of which act as $d(\cdot, \cdot)\mapsto d(b(\cdot),b(\cdot)),$ where $d$ is a pseudometrics on $X$ and $b\in B.$ A function $f$ on the set of all pseudometrics on $X$
is called $\widehat B$-symmetric if $f$ is invariant under the action on its argument of elements of the group $\widehat B.$
If two pseudometrics $d_1$ and $d_2$ are $B$-equivalent, then $f(d_1)=f(d_2)$ for every $\widehat B$-symmetric function $f.$
In general, the technique of symmetric functions is well-developed for the case of symmetric continuous polynomials and, in particular, for the case of symmetric continuous linear functionals on Banach spaces. To use this technique for the construction of $\widehat B$-symmetric
functions on sets of pseudometrics, we map these sets to some appropriate Banach space $V$, which is isometrically isomorphic to the Banach space $\ell_1$
of all absolutely summing real sequences.
We
investigate symmetric (with respect to an arbitrary group of symmetry, elements of which
map the standard Schauder basis of $\ell_1$ into itself) linear continuous functionals
on $\ell_1.$
We obtain the complete description of the structure of these functionals.
Also we establish analogical results for symmetric linear continuous functionals on the space $V.$ These results are used for the construction of $\widehat B$-symmetric functionals on the set of all pseudometrics on an arbitrary set $X$ for the following case:
the group
$B$ of bijections on $X,$ that generates the group $\widehat B,$ is such that the set of all $x\in X,$ for which there exists $b\in B$ such that $b(x)\neq x,$
is finite.
References
R. Alencar, R. Aron, P. Galindo, A. Zagorodnyuk, Algebras of symmetric holomorphic functions on $ell_p$, Bull. Lond. Math. Soc., 35 (2003), №2, 55–64. doi:10.1112/S0024609302001431
R. Aron, P. Galindo, D. Pinasco, I. Zalduendo, Group-symmetric holomorphic functions on a Banach space, Bull. Lond. Math. Soc., 48 (2016), №5, 779–796. doi:10.1112/blms/bdw043
A. Bandura, V. Kravtsiv, T. Vasylyshyn, Algebraic basis of the algebra of all symmetric continuous polynomials on the Cartesian product of $ell_p$-spaces, Axioms, 11 (2022), №2, 41. doi:10.3390/axioms11020041
I.V. Burtnyak, Yu.Yu. Chopyuk, S.I. Vasylyshyn, T.V. Vasylyshyn, Algebras of weakly symmetric functions on spaces of Lebesgue measurable functions, Carpathian Math. Publ., 15 (2023), №2, 411–419. doi:10.15330/cmp.15.2.411-419
I. Chernega, P. Galindo, A. Zagorodnyuk, On the spectrum of the algebra of bounded-type symmetric analytic functions on $ell_1$, Math. Nachr., (2024) doi:10.1002/mana.202300415
J. Falc´o, D. Garc´ıa, M. Jung, M. Maestre, Group-invariant separating polynomials on a Banach space, Publicacions Matematiques, 66 (2022), №1, 207–233. doi:10.5565/PUBLMAT6612209
P. Galindo, T. Vasylyshyn, A. Zagorodnyuk, Symmetric and finitely symmetric polynomials on the spaces$ell_infty$ and $L_infty[0,+infty)$, Math. Nachr., 291 (2018), №11–12, 1712–1726. doi:10.1002/mana.201700314
M. Gonz´alez, R. Gonzalo, J. A. Jaramillo, Symmetric polynomials on rearrangement invariant function spaces, J. Lond. Math. Soc., 59 (1999), №2, 681–697. doi:10.1112/S0024610799007164
V. Kravtsiv, T. Vasylyshyn, A. Zagorodnyuk, On algebraic basis of the algebra of symmetric polynomials on $ell_p(mathbb{C}^n)$, J. Funct. Spaces, 2017 (2017), 4947925, 8 p. doi:10.1155/2017/4947925
V.V. Kravtsiv, A.V. Zagorodnyuk, Spectra of algebras of block-symmetric analytic functions of bounded type, Mat. Stud., 58 (2022), №1, 69–81. doi:10.30970/ms.58.1.69-81
A.S. Nemirovskii, S.M. Semenov, On polynomial approximation of functions on Hilbert space, Mat. USSR Sbornik, 21 (1973), №2, 255–277. doi:10.1070/SM1973v021n02ABEH002016
S. Nykorovych, O. Nykyforchyn, Metric and topology on the poset of compact pseudoultrametrics, Carpathian Math. Publ., 15 (2023), №2, 321–330. doi:10.15330/cmp.15.2.321-330
S. Nykorovych, O. Nykyforchyn, A. Zagorodnyuk, Approximation relations on the posets of pseudoultrametrics, Axioms, 12 (2023), №5, 438. doi:10.3390/axioms12050438
S.I. Vasylyshyn, Spectra of algebras of analytic functions, generated by sequences of polynomials on Banach spaces, and operations on spectra, Carpathian Math. Publ., 15 (2023), №1, 104–119. doi:10.15330/cmp.15.1.104-119
T. Vasylyshyn, Algebras of symmetric analytic functions on Cartesian powers of Lebesgue integrable in a power $pin[1,+infty)$ functions, Carpathian Math. Publ., 13 (2021), №2, 340–351. doi:10.15330/cmp.13.2.340-351
T. Vasylyshyn, Symmetric analytic functions on the Cartesian power of the complex Banach space of Lebesgue measurable essentially bounded functions on [0, 1], J. Math. Anal. Appl., 509 (2022), №2, Article number 125977. doi:10.1016/j.jmaa.2021.125977
T. Vasylyshyn, Algebras of symmetric and block-symmetric functions on spaces of Lebesgue measurable functions, Carpathian Math. Publ., 16 (2024), №1, 174–189. doi:10.15330/cmp.16.1.174-189
T. Vasylyshyn, V. Zahorodniuk, Weakly symmetric functions on spaces of Lebesgue integrable functions, Carpatian Math. Publ. 14 (2022), №2, 437–441. doi:10.15330/cmp.14.2.437-441
T. Vasylyshyn, V. Zahorodniuk, On isomorphisms of algebras of entire symmetric functions on Banach spaces, J. Math. Anal. Appl., 529 (2024), №2, Article number 127370. doi:10.1016/j.jmaa.2023.127370
Copyright (c) 2024 S. I. Nykorovych, T. V. Vasylyshyn
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.