The norming sets of multilinear forms on a certain normed space Rn
Анотація
Let n,m∈N,n,m≥2 and E a Banach space. An element (x1,…,xn)∈En is called a~norming point of T∈L(nE) if ‖x1‖=⋯=‖xn‖=1 and |T(x1,…,xn)|=‖T‖, where L(nE) denotes the space of all continuous n-linear forms on E. For T∈L(nE), we define Norm(T) as the set of all (x1,…,xn)∈En which are the norming points of~T. Let Rn‖⋅‖=Rn with a norm satisfying that {W1,…,Wn} forms a basis and the set of all extreme points of BRn‖⋅‖ is {±W1,…,±Wn}. In the paper we characterize Norm(T) for every T∈L(mRn‖⋅‖) as follows: Let T=(T(Wi1,…Wim))1≤ik≤n,1≤k≤m∈L(mRn‖⋅‖), ‖T‖=1,\ ST=(bi1⋯im)1≤ik≤n,1≤k≤m∈L(mRn‖⋅‖) such that bi1⋯im=T(Wi1,…Wim) if |T(Wi1,…Wim)|=1 and bi1⋯im=1 if |T(Wi1,…Wim)|<1, and A is the Cartesian product of the set {1,…,n}, M is the set of indices (i1,…,im)∈A such that |T(Wi1,…Wim)|<1. Then, Norm(T)=⋂(i1,…,im)∈Mm⋃j=1{(∑1≤i≤ns(1)iWi,…,∑1≤i≤ns(j−1)iWi,∑1≤i≤ns(j)iWi−sijWij,∑1≤i≤ns(j+1)iWi,…,∑1≤i≤ns(m)iWi):(∑1≤i≤ns(1)iWi,…,∑1≤i≤ns(m)iWi)∈Norm(ST)}.Посилання
M.D. Acosta, On multilinear mappings attaining their norms, Studia Math., 131 (1998), №2, 155–165.
R.M. Aron, C. Finet, E. Werner, Some remarks on norm-attaining n-linear forms, Function spaces (Edwardsville, IL, 1994), 19–28, Lecture Notes in Pure and Appl. Math., V.172, Dekker, New York, 1995.
E. Bishop, R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc., 67 (1961), 97–98.
Y.S. Choi, S.G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc., 54 (1996), №2, 135–147.
S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London, 1999.
C. Finet, P. Georgiev, Optimization by n-homogeneous polynomial perturbations, Bull. Soc. Roy. Sci. Liege, 70 (2002), 251–257.
M. Jimenez Sevilla, R. Pay´a, Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces, Studia Math., 127 (1998), 99–112.
S.G. Kim, The norming set of a bilinear form on l2infty, Comment. Math., 60 (2020), №1-2, 37–63.
S.G. Kim, The norming set of a symmetric bilinear form on the plane with the supremum norm, Mat. Stud., 55 (2021), №2, 171–180.
S.G. Kim, The norming set of a symmetric 3-linear form on the plane with the l1-norm, New Zealand J. Math., 51 (2021), 95–108.
S.G. Kim, The unit ball of bilinear forms on mathbbR2 with a rotated supremum norm, Bull. Transilv. Univ. Brasov, Ser. III, Math. Comput. Sci., 2(64) (2022), №1, 99–120.
S.G. Kim, The norming sets of mathcalL(2l21) and mathcalLs(2l31), Bull. Transilv. Univ. Brasov, Ser. III, Math. Comput. Sci., 2(64) (2022), №2, 125–150.
S.G. Kim, The norming sets of mathcalL(2mathbbR2h(w)), Acta Sci. Math. (Szeged), 89 (2023), №1-2, 61–79.
J. Lindenstrauss, On operators which attain their norm, Israel J. Math., 1 (1963), 139–148.
R. Paya, Y. Saleh, New sufficient conditions for the denseness of norm attaining multilinear forms, Bull. London Math. Soc., 34 (2002), 212–218.
C. Stegall, Optimization of functions on certain subsets of Banach spaces, Math. Ann., 236 (1978), 171–176.
Авторське право (c) 2024 Sung Guen Kim

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.