On the h-measure of an exceptional set in Fenton-type theorem for Taylor-Dirichlet series

  • A.Yu. Bodnarchuk Ivan Franko National University of Lviv, Lviv, Ukraine
  • Yu.M. Gal' Drohobych Ivan Franko Pedagogical State University, Drohobych, Ukraine
  • O.B. Skaskiv Ivan Franko National University of Lviv, Lviv, Ukraine
Keywords: Taylor-Dirichlet series; maximal term; exceptional set

Abstract

We consider the class $S(\lambda,\beta,\tau)$ of convergent for all  $x\ge0$ Taylor-Dirichlet type series of the form $$F(x) =\sum_{n=0}^{+\infty}{b_ne^{x\lambda_n+\tau(x)\beta_n}},\  b_n\geq 0\ (n\geq 0),$$  where  $\tau\colon [0,+\infty)\to (0,+\infty)$\ is a continuously differentiable non-decreasing function, $\lambda=(\lambda_n)$ and $\beta=(\beta_n)$ are such that $\lambda_n\geq 0, \beta_n\geq 0$ $(n\geq 0)$. In the paper we give a partial answer to a question formulated by Salo T.M., Skaskiv O.B., Trusevych O.M. on International conference  ``Complex Analysis and Related Topics'' (Lviv, September 23-28, 2013) ([2]). We prove the following statement: For each increasing function  $h(x)\colon [0,+\infty)\to (0,+\infty)$, $h'(x)\nearrow +\infty$ $ (x\to +\infty)$, every sequence  $\lambda=(\lambda_n)$ such that  $\displaystyle\sum_{n=0}^{+\infty}\frac1{\lambda_{n+1}-\lambda_n}<+\infty$ and for any non-decreasing sequence  $\beta=(\beta_n)$ such that $\beta_{n+1}-\beta_n\le\lambda_{n+1}-\lambda_n$ $(n\geq 0)$  there exist a function  $\tau(x)$ such that $\tau'(x)\ge 1$ $(x\geq x_0)$, a function  $F\in S(\alpha, \beta, \tau)$, a set  $E$ and  a constant $d>0$ such that $h-\mathop{meas} E:=\int_E dh(x)=+\infty$ and $(\forall x\in E)\colon\ F(x)>(1+d)\mu(x,F),$ where $\mu(x,F)=\max\{|a_n|e^{x\lambda_n+\tau(x)\beta_n}\colon n\ge 0\}$ is the maximal term of the series.   At the same time, we also pose some open questions and formulate one conjecture.

References

1. Velychko S.D., Skaskiv O.B. Asymptotic properties of one class of functional series, Visn. Lviv. Un-ty, Ser. Mekh.-Math., 32 (1989), 50–51. (in Ukrainian)
2. Salo T.M., Skaskiv O.B., Trusevych O.M. About exceptional sets in Fenton’s type theorem, Сomplex Analysis and Related Topics: Abstracts, International conf. (Lviv, September 23-28, 2013), Lviv, 2013, 67–68.
3. Salo T.M., Skaskiv O.B., Trakalo O.M. On the best possible description of exeptional set in Wiman-Valiron theory for entire function, Mat. Stud. 16 (2001), No2, 131–140. http://matstud.org.ua/texts/2001/162/131140.pdf
4. Skaskiv O.B., Trusevych O.M. Maximal term and the sum of a regularly convergent functional series, Visn. Lviv. Un-ty, Ser. Mekh.-Math., 49 (1998), 75–79. (in Ukrainian)
5. Salo T.M., Skaskiv O.B. The minimum modulus of gap power series and h-measure of exceptional sets, arXiv:1512.05557v2 [math.CV], 17 Dec. 2015, 13 p. https://doi.org/10.48550/arXiv.1512.05557
6. Salo T.M., Skaskiv O.B. Minimum modulus of lacunary power series and h-measure of exceptional sets, Ufa Math. J., 9 (2017), No4, 135–144.
Published
2024-03-27
How to Cite
Bodnarchuk, A., Gal’, Y., & Skaskiv, O. (2024). On the h-measure of an exceptional set in Fenton-type theorem for Taylor-Dirichlet series. Matematychni Studii, 61(1), 109-112. https://doi.org/10.30970/ms.61.1.109-112
Section
Problem Section