Estimates of matrix solutions of operator equations with random parameters under uncertainties
Abstract
We investigate problems of estimating solutions of linear operator equations with random parameters under conditions of uncertainty. We establish that the guaranteed rms estimates of the matrices are found as solutions of special optimization problems under certain observations of the system state. As the output signals of the system, we have observations that are described by linear functions from the solutions of such equations with random right-hand sides, which have unknown second moments. Under the condition that the observation second moments of the right-hand parts and errors belong to certain sets, it is proved that the guaranteed estimates are expressed through solutions of operator equation systems. When the linear operator is given by the scalar product of rectangular matrices, a quasi-minimax estimate and its error are constructed. It is shown that the quasi-minimax estimation error tends to zero when the number of observations tends to infinity. An example of calculating the guaranteed rms estimate of the matrix's trace, which is a solution of a matrix equation with a random parameter, is given.
References
Yuan Ke, S. Minsker, Zhao Ren, Qiang Sun, Wen-Xin Zhou, Uzer friendly covariance estimation for heavy-tailed distributions, Statistical Science, 34 (2019), №3, 454–471.
S. Minsker, Sub-gaussian estimators of mean of a random matrix with heavy-tailed entries, The Annals of Statistics, 46 (2018), №6A, 2871–2903.
Jun Tong, Rui Hu, Jiangtao Xi, Zhitao Xiao, Qinghua Guo, Yanguang Yu, Linear shrinkage estimation of covariance matrices using complexity cross-validation, Signal Processing, 148 (2018), 223–233.
Roberto Cabal Lopes, Robust estimation of the mean a random matrix: a non-asymptotic study, Centro de Investigacion en Matematicas, A.C., 2020, 187 p.
H. Battey H., J. Fan, J. Lu, Z. Zhu, Distributed testing and estimation under sparse high dimensional models The Annals of Statistics, 46 (2018) (3), 1352–1382.
T.T. Cai, H. Wei, Distributed Gaussian mean estimation under communication constraints: Optimal rates and communication-efficient algorithms, arXiv: 2001.08877, 2020.
T. Ke, Y. Ma, X. Lin, Estimation of the number of spiked eigenvalues in a covariance matrix by bulk eigenvalue matching analysis, arXiv: 2006.00436, 2020.
C. McKennan, Factor analysis in high dimensional biological data with dependent observations, arXiv: 2009.11134, 2020.
S. Chatterjee, Matrix estimation by universal singular value thresholding, The Annals of Statistics, 43 (2015), №1, 177–214.
F.H. Clark, Optimization and non-smooth analysis, SIAM, 1990, 320 p.
E.A. Kapustyan, A.G. Nakonechny, The minimaxproblems of pointwise observation for a parabolic boundary-value problem, Journal of Automation and Information Sciences, 34 (2002), №5–8, 52—63.
E.A. Kapustyan, A.G. Nakonechny, Approximate minimax estimation of functionals of solutions to the wave equation under nonlinear observations, Cyberneticsand Systems Analysis, 56 (2020), №5, 793–801.
A.G. Nakonechnyi, S.O. Mashchenko, V.K. Chikrii, Motioncontrol under conflict condition, Journal of Automation and Information Sciences, 50 (2018) (1), 54–75.
O.G. Nakonechnyi, G.I. Kudin, P.M. Zinko, T.P. Zinko, Metod vozmushchenii v zadachakh lineinoi matrichnoi regressii, Problemi upravleniya i informatiki, 1 (2020), 38–47.
O.G. Nakonechnyi, G.I. Kudin, P.M. Zinko, T.P. Zinko, Nablyzheni harantovani otsinky matryts u zadachakh liniinoi rehresii z malym parametrom, Systemni doslidzhennia ta informatsiini tekhnolohii, 4 (2020), 88–102.
O.G. Nakonechnyi, G.I. Kudin, P.M. Zinko, T.P. Zinko, Garantirovannie srednekvadraticheskie otsenki lineinikh preobrazovanii matrits v usloviyakh statisticheskoi neopredelyonnosti, Problemi upravleniya i informatiki, 2 (2021), 24–37.
O.G. Nakonechnyi, G.I. Kudin, P.M. Zinko, T.P. Zinko, Minimaksnie srednekvadraticheskie otsenki matrichnikh parametrov v zadachakh lineinoi regressii v usloviyakh neopredelyonnosti, Problemi upravleniya i informatiki, 4 (2021), 28–37.
O.G. Nakonechnyi, G.I. Kudin, P.M. Zinko, T.P. Zinko, Y.V. Shusharin, Guaranteed root mean square estimates of linear matrix equations solutions under conditions of uncertainty, Mathematical Modeling and Computing, 10 (2023), №2, 474–486.
O.G. Nakonechnyi, G.I. Kudin, P.M. Zinko, T.P. Zinko, Harantovani serednokvadratychni otsinky sposterezhen iz nevidomymy matrytsiamy, Zhurnal obchysliuvalnoi ta prykladnoi matematyky, 2 (2022), 98–115.
Copyright (c) 2023 O. G. Nakonechnyi, P. M. Zinko
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.