Transformation operators for impedance Sturm–Liouville operators on the line

  • M. Kazanivskiy Ivan Franko National University of Lviv
  • Ya. Mykytyuk Ivan Franko National University of Lviv
  • N. Sushchyk Ivan Franko National University of Lviv
Keywords: transformation operators, bounded measures, impedance Sturm–Liouville operator

Abstract

In the Hilbert space $H:=L_2(\mathbb{R})$, we consider the impedance Sturm--Liouville operator $T:H\to H$ generated by the differential expression $ -p\frac{d}{dx}{\frac1{p^2}}\frac{d}{dx}p$, where the function  $p:\mathbb{R}\to\mathbb{R}_+$ is of bounded variation on $\mathbb{R}$ and $\inf_{x\in\mathbb{R}} p(x)>0$. Existence of the transformation operator for the operator $T$ and its properties are studied.

In the paper, we suggest an efficient parametrization of the impedance function p in term of a real-valued bounded measure $\mu\in \boldsymbol M$ via
$
p_\mu(x):= e^{\mu([x,\infty))}, x\in\mathbb{R}.
$
For a measure $\mu\in \boldsymbol M$, we establish existence of the transformation operator for the Sturm--Liouville operator $T_\mu$, which is constructed with the function $p_\mu$. Continuous dependence of the operator $T_\mu$ on $\mu$ is also proved. As a consequence, we deduce that the operator $T_\mu$ is unitarily equivalent to the operator $T_0:=-d^2/dx^2$.

Author Biographies

M. Kazanivskiy, Ivan Franko National University of Lviv

Ivan Franko National University of Lviv

Ya. Mykytyuk, Ivan Franko National University of Lviv

Ivan Franko National University of Lviv

N. Sushchyk, Ivan Franko National University of Lviv

Ivan Franko National University of Lviv

References

T. Kato, Perturbation theory of linear operators, Reprint of the 1980 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995.

V.A. Marchenko, Sturm–Liouville Operators and Their Applications, Naukova Dumka Publ., Kiev, 1977 (in Russian); Engl. transl.: Birkhauser Verlag, Basel, 1986.

F. Demontis, C. van der Mee, Scattering operators for matrix Zakharov-Shabat systems, Integral Equations and Operator Theory, 62 (2008), 517–540, https://doi:10.1007/s00020-008-1640-3.

S. Albeverio, R. Hryniv, Ya. Mykytyuk, Inverse scattering for impedance Schr¨odinger operators, I. Steplike impedans lattice, J. Math. Analysis and Appl., (2017), https://doi:10.1016/j.jmaa. 2017.07.068 (27pp.)

V.I. Bogachev,Weak convergence of measures, Amer. Math. Soc., Mathematical Surveys and Monographs, 234, (2018), 286 p.

I. Gohberg, S. Goldberg, M. Kaashoek, Classes of linear operators, V.2, Birkhauser Verlag, 1990, 465 p.

A.P. Robertson, W. Robertson, Topological vector spaces, Cambidge University Press, 1964.

C. Frayer, R.O. Hryniv, Ya.V. Mykytyuk, P.A. Perry Inverse scattering for Schr¨odinger operators with Miura potentials: I. Unique Riccati representatives and ZS-AKNS systems, Inverse Problems, 25 (2009), 115007 (25 p).

J. Bergh, J. Lofstrom, Interpolation spaces, An introduction, Grundlehren der Mathematischen Wissenschaften, 223, Springer–Verlag, Berlin–New York, 1976.

Published
2023-09-22
How to Cite
Kazanivskiy, M., Mykytyuk, Y., & Sushchyk, N. (2023). Transformation operators for impedance Sturm–Liouville operators on the line. Matematychni Studii, 60(1), 79-98. https://doi.org/10.30970/ms.60.1.79-98
Section
Articles