Quasi-monomials with respect to subgroups of the plane affine group
Abstract
Let $H$ be a subgroup of the plane affine group ${\rm Aff}(2)$ considered with the natural action on the vector space of two-variable polynomials. The polynomial family $\{ B_{m,n}(x,y) \}$ is called quasi-monomial with respect to $H$ if the group operators in two different bases $ \{ x^m y^n \} $ and $\{ B_{m,n}(x,y) \}$ have \textit{identical} matrices. We obtain a criterion of quasi-monomiality for the case when the group $H$ is generated by rotations and translations in terms of exponential generating function for the polynomial family $\{ B_{m,n}(x,y) \}$.
References
M.K. Hu, Visual pattern recognition by moment invariants, IRE Trans. Inform. Theory, 8 (1962), №2, 179–187.
M. Pawlak, Image analysis by moments: reconstruction and computational aspects. Wydawnictwo Politechniki Wroclawskiej, Wroclaw, 2006.
G.A. Papakostas, Moments and moment invariants. Theory and Applications, G.A. Papakostas (Ed.), Gate to Computer Sciece and Research, V.1, 2014.
J. Flusser, T. Suk, B. Zitova, 2D and 3D image analysis by moments, Wiley & Sons Ltd, 2016.
J. Flusser, On the independence of rotation moment invariants, Pattern Recogn, 33 (2000), №9, 1405-1410.
L. Bedratyuk, 2D Geometric moment invariants from the point of view of the classical invariant theory, Journal of Mathematical Imaging and Vision, 62 (2020), 1062–1075.
Chee-Way Chong, P. Raveendran, R. Mukundan, Translation and scale invariants of Legendre moments,Pattern Recognition, 37 (2004), №1, 119–129.
L. Bedratyuk, J. Flusser, T. Suk, J. Kostkova, J. Kautsky, Non-separable rotation moment invariants, Pattern Recognition, 127 (2022), 108607. http://library.utia.cas.cz/separaty/2022/ZOI/flusser0555291.pdf
E. Kamke, Differentialgleichungen Losungsmethoden und Losungen: II. Partielle Differentialgleichungen Erster Ordnung fur eine Gesuchte Funktion, Teubner Verlag, 1979.
B. Yang, G. Li, H. Zhang, M. Dai, Rotation and translation invariants of Gaussian-Hermite moments, Pattern Recognition Letters, 32 (2011), №9, 1283-1298.
R. Mukundan, S.H. Ong, P.A. Lee, Image analysis by Tchebichef moments, IEEE Transactions on Image Processing, 10 (2001), №9, 1357–1364.
Copyright (c) 2023 N. Samaruk
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.