Zeros of block-symmetric polynomials on Banach spaces
Abstract
We investigate sets of zeros of block-symmetric polynomials on the direct sums of sequence spaces. Block-symmetric polynomials are more general objects than classical symmetric polynomials.
An analogues of the Hilbert Nullstellensatz Theorem for block-symmetric polynomials on $\ell_p(\mathbb{C}^n)=\ell_p \oplus \ldots \oplus \ell_p$ and $\ell_1 \oplus \ell_{\infty}$ is proved. Also, we show that if a polynomial $P$ has a block-symmetric zero set then it must be block-symmetric.
References
R. Alencar, R. Aron, P. Galindo, A. Zagorodnyuk, Algebra of symmetric holomorphic functions on ℓp, Bull. Lond. Math. Soc., 35 (2003), 55–64. doi: 10.1112/S0024609302001431.
I. Chernega, P. Galindo, A. Zagorodnyuk, Some algebras of symmetric analytic functions and their spectra, Proc. Edinburgh Math. Soc., 55 (2012)), 125–142. doi:10.1017/S0013091509001655.
I. Chernega, P. Galindo, A. Zagorodnyuk, The convolution operation on the spectra of algebras of symmetric analytic functions, J. Math. Analysis Applic., 395 (2012), 569—577. doi.org/10.1016/ j.jmaa.2012.04.087
S. Dineen, Complex analysis on infinite dimensional spaces, Springer, London, 1999.
P. Galindo, T. Vasylyshyn, A. Zagorodnyuk, Symmetric and finitely symmetric polynomials on the spaces ℓ1 and L1[0,+∞), Mathematische Nachrichten, 291 (2018), №11–12, 1712–1726. doi:org/10.1002/mana.201700314.
G. Kemper, A Course in Commutative Algebra, Springer, Berlin, 2011.
V. Kravtsiv, Algebraic basis of the algebra of block-symetric polynomials on ℓ1 ⊕ ℓ1, Carpathian Math. Publ., 11 (2019), №1, 89–95. doi:10.15330/cmp.11.1.89-95
V. Kravtsiv, T. Vasylyshyn, A. Zagorodnyuk, On Algebraic basis of the algebra of symmetric polynomials on lp(Cn), Journal of Function Spaces, 2017 (2017), Article ID 4947925, 8 p. doi.org/10.1155/2017/4947925.
V. Kravtsiv On generalizations of the Hilbert Nullstellensatz for infinity dimensions (a survey), Journal of Vasyl Stefanyk Precarpathian National University, 2 (2015), №4, 58–74. doi:10.15330/jpnu.2.4.58-74.
V. Kravtsiv Algebra of block-symmetric polynomials: generating elements and the translation operator, Math. Bull. Shevchenko Sci. Soc., 8 (2011), 107—121. (in Ukrainian)
R.D. Mauldin, The Scottish Book, Birkhauser‘, Boston, 1981.
A.V. Zagorodnyuk, Groups of symmetries of the set of zeros of polynomial functionals on complex Banach spaces, J. Math. Sci., 104 (2001), №5, 1428–1431.
A.V. Zagorodnyuk, Spectra of Algebras of Analytic Functions and Polynomials on Banach Spaces, Contemporary Math., 435 (2007), №5, 381–394.
A.V. Zagorodnyuk, The Nullstellensatz on infinite-dimensional complex spaces, J. Math. Sci., 92 (1999), №2, 2951–2956.
Copyright (c) 2020 V. Kravtsiv
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.