An analog of the Hille theorem for hypercomplex functions in a finite-dimensional commutative algebra
Abstract
We prove that a locally bounded and differentiable in the sense of Gâteaux function given in a finite-dimensional commutative Banach algebra over the complex field is also differentiable in the sense of Lorc and it is a monogenic function. The algebra $\mathbb{A}_n^m$ has the Cartan basis for which the first $m$ basic vectors $I_1,$ $I_2,$ $\ldots,$ $I_m$ are idempotents, and next $n-m$ basis vectors $I_{m+1},I_{m+2},\dots,I_n$ are nilpotent elements.
Every locally bounded and differentiable in the sense of Gâteaux function $\Phi\colon \Omega\rightarrow\mathbb{A}_n^m$ can be represented in the form of linear combination of these idempotents, nilpotents and corresponding Cauchy-type integrals.
References
S.A. Plaksa, V.S. Shpakivskyi, Monogenic functions in spaces with commutative multiplication and applications, Frontiers in Mathematics, Birkhauser, Cham, 2023. https://doi.org/10.1007/978-3-031-32254-9
M. Frechet, La notion de diff´erentielle dans l’analyse generate, Ann. Ecole Norm. Sup., 42 (1925), №3, 293–323. https://doi.org/10.24033/asens.766
R. Gateaux, Fonctions dune infinite des variables independantes, Bull. Soc. Math. France, 47 (1919), 70–96. https://doi.org/10.24033/bsmf.995
E. Hille, Topics in the Theory of Semigroups, Colloquium Lectures, 1944.
E. Hille, R.S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc., Providence, R.I., 1957.
G. Scheffers, Verallgemeinerung der grundlagen der gew¨ohnlich complexen fuktionen, I. Ber. Verh. Sachs. Akad. Wiss. Leipzig Mat.-Phys. Kl., 45 (1893), 828–848.
E.R. Lorch, The theory of analytic function in normed abelian vector rings, Trans. Amer. Math. Soc., 54 (3) (1943), 414–425. https://doi.org/10.1090/S0002-9947-1943-0009090-0
I.P. Mel’nichenko, The representation of harmonic mappings by monogenic functions, Ukr. Math. J., 27 (1975), №5, 499–505. https://doi.org/10.1007/BF01089142
S.A. Plaksa, On differentiable and monogenic functions in a harmonic algebra, Zb. Pr. Inst. Mat. NAN Ukr., 14 (2017), №1, 210–221. https://trim.imath.kiev.ua/index.php/trim/article/download/114/103/338
E. Cartan, Les groupes bilineares et les systemes de nombres complexes, Annales de la faculte des sciences de Toulouse, 12 (1998), №1, 1–64.
S.A. Plaksa, R.P. Pukhtaievych, Constructive description of monogenic functions in n-dimensional semisimple algebra, An. St. Univ. Ovidius Constanta, 22 (2014), №1, 221–235. https://doi.org/10.2478/auom-2014-0018
V. Shpakivskyi, Constructive description of monogenic functions in a finite-dimensional commutative associative algebra, Adv. Pure Appl. Math., 7 (2016), №1, 63–75. https://doi.org/10.1515/apam-2015-0022
V. Shpakivskyi, Monogenic functions in finite-dimensional commutative associative algebras, Zb. Pr. Inst. Mat. NAN Ukr., 12 (2015), №3, 251–268. https://trim.imath.kiev.ua/index.php/trim/article/view/176
V.S. Shpakivskyi, Integral theorems for monogenic functions in commutative algebras, Zb. Pr. Inst. Mat. NAN Ukr., 12 (2015), №4, 313–328. https://trim.imath.kiev.ua/index.php/trim/article/view/308
E. Goursat, Cours danalyse mathematique, V.2, Gauthier–Villars, Paris, 1910.
Ju.Ju. Trokhimchuk, Continuous mappings and conditions of monogeneity, Israel Program for Scientific Translations, Jerusalem., Daniel Davey & Co. Inc., New York, 1964.
F. Sommen, Spherical monogenic functions and analytic functionals on the unit sphere, Tokyo J. Math., 4 (1981), №2, 427–456. https://doi.org/10.3836/tjm/1270215166
J. Ryan, Dirac operators, conformal transformations and aspects of classical harmonic analysis, J. Lie Theory, 8 (1998), №1, 67–82.
M.V. Tkachuk, S.A. Plaksa, An analog of the Menchov–Trokhimchuk theorem for monogenic functions in a three-dimensional commutative algebra, Ukr. Math. J., 73 (2022), №8, 1299–1308. https://doi.org/10.1007/s11253-022-01991-w
G. Tolstoff, Sur les fonctions bornees verifiant les conditions de Cauchy–Riemann, Rec. Math. [Mat. Sbornik] N.S., 10(52) (1942), №1–2, 79–85.
Copyright (c) 2025 S. A. Plaksa, V. S. Shpakivskyi, M. V. Tkachuk

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.