Relative growth of Hadamard compositions of Dirichlet series absolutely convergent in a half-plane
Abstract
Let Λ=(λn) be a positive sequence increasing to +∞ and S(Λ,A) be a class of Dirichlet series F(s)=∞∑n=1anexp{sλn} with the abscissa of absolute convergence A∈(−∞,+∞]. The function F is called Hadamard composition of the genus m≥1 of the functions Fj(s)=∞∑n=0an,jexp{sλn} (j=1,2,…,p), if an=∑k1+⋯+kp=mck1...kpak1n,1⋅...⋅akpn,p for all n. The growth of the function F∈S(Λ,0) with respect to a function G(s)=∞∑n=1gnexp{sλn}∈S(Λ,+∞) is identified with the growth of the function M−1G(MF(σ)) as σ↑0, where MF(σ)=sup. The dependence of the growth of a function M^{-1}_G(M_F(\sigma)) on the growth of functions M^{-1}_G(M_{F_j}(\sigma)) is studied in terms of generalized orders and generalized convergence classes.
References
O.M. Mulyava, M.M. Sheremeta, Relative growth of Dirichlet series, Mat. Stud., 49 (2018), No2, 158–164. https://doi.org/10.15330/ms.49.2.158-164
O.M. Mulyava, M.M. Sheremeta, Remarks to relative growth of entire Dirichlet series, Visnyk Lviv Univ. Ser. mech.-math., 87 (2019), 73–81. http://dx.doi.org/10.30970/vmm.2019.87.073-081
O.M. Mulyava, M.M. Sheremeta, Relative growth of Dirichlet series with different abscissas of absolute convergence, Ukr. Math. J., 72 (2020), No11, 1771–1183. https://doi.org/10.1007/s11253-021-01887-1
O.M. Mulyava, M.M. Sheremeta, Relative growth of entire Dirichlet series with different generalized orders, Bukovyn. Mat. Zh., 9 (2021), No2, 22–34. https://doi.org/10.31861/bmj2021.02.02
O.M. Mulyava, M.M. Sheremeta, Compositions of Dirichlet series similar to the Hadamard compositions, and convergence classes, Mat. Stud., 51 (2019), No1, 25–34. https://doi.org/10.15330/ms.51.1.25-34.
A.I. Bandura, O.M. Mulyava, M.M. Sheremeta, On Dirichlet series similar to Hadamard compositions in half-plane, Carpatian Math. Publ., 15 (2023), No1, 180–195. https://doi.org/10.15330/cmp.15.1.180-195.
O.M. Mulyava, M.M. Sheremeta, Yu.S. Trukhan, Relative growth of Hadamard compositions of entire Dirichlet series, Visnyk of Lviv Univ. Series Mech. Math. 95 (2023), 83–93. http://dx.doi.org/10.30970/vmm.2023.95.073-082
Yu.M. Gal’, M.M. Sheremeta, On the growth of analytic functions defined by Dirichlet series, Dop. AN URSR, Ser. A, 12 (1978), 1065–1067. (in Ukrainian)
Yu.M. Gal’, On the growth of analytic fuctions given by Dirichlet series absolute convergent in a half-plane, Drohobych, 1980, Manuscript dep. VINITI, No4080-80 Dep. (in Russian)
A.M. Gaisin, Estimates for the growth of functions represented by Dirichlet series in the half-plane, Mat. Sbornik, 117 (1982), No3, 412–424. (in Russian)
O.M. Mulyava, On convergence classes of Dirichlet series, Ukr. Math. J., 51 (1999), No11, 1681–1692. https://doi.org/10.1007/BF02525271
O. Mulyava, M. Sheremeta, Convergence classes of analytic functions, Kyiv, Publishing Lira-K, 2020, 196 p.
M.M. Sheremeta, On two classes of positive functions and the belonging to them of main characteristics of entire functions, Mat. Stud., 19 (2003), No1, 75–82. http://matstud.org.ua/texts/2003/19_1/73_82.pdf
I. Ovchar, Ya. Savchuk, O. Skaskiv, Wiman-Valiron’s type theorem for entire Dirichlet series with arbitrary complex exponents, Bukovyn. Mat. Zh., 4 (2016), No1–2, 130–135. (in Ukrainian)
A. Kuryliak, Wiman’s type inequality for entire multiple Dirichlet series with arbitrary complex exponents, Mat. Stud., 59 (2023), No2, 178–186. https://doi.org/10.30970/ms.59.2.178-186
M. Kuryliak, O. Skaskiv, On the domain of convergence of general Dirichlet series with complex exponents, Carpathian Math. Publ., 15 (2023), 594–607. https://doi.org/10.15330/cmp.15.2.594-607
A. Kuryliak, M. Kuryliak, O. Skaskiv, On the domain of the convergence of Taylor-Direchlet series with complex exponents, Precarpathian bulletin of the Shevchenko scientific society. Number, 18(68) (2023), 25–31. https://doi.org/10.31471/2304-7399-2023-18(68)-25-31
Copyright (c) 2025 O. Mulyava, Yu. Trukhan, M. Sheremeta

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.