A uniqueness theorem for meromorphic functions

  • N. Sushchyk Ivan Franko National University of Lviv
  • D. Lukivska Ivan Franko National University of Lviv
Keywords: meromorphic functions, Blaschke products

Abstract

In this paper, we prove the uniqueness theorem for a special class of meromorphic functions on the complex plane $\mathbb{C}$. In particular, we study the class of meromorphic functions $f$ in the domain $\mathbb{C}\setminus K'$, where $K'$ is the finite set of limit points of simple poles of the function $f$. In this class, we describe non-trivial subclasses in which every function $f$ can be uniquely determined by the residues of the function $f$ at its poles. The result covered in this paper is a part of a problem in a spectral operator theory.

Author Biographies

N. Sushchyk, Ivan Franko National University of Lviv

Ivan Franko National University of Lviv

Lviv, Ukraine

D. Lukivska, Ivan Franko National University of Lviv

Ivan Franko National University of Lviv

Lviv, Ukraine

References

I. Hur, M. McBride, C. Remling, The Marchenko representation of reflectionless Jacobi and Schrodinger operators, Trans. AMS, 368 (2016), №. 2, 1251–1270.

A. Poltoratski, C. Remling, Reflectionless Herglotz functions and Jacobi matrices, Comm. Math. Phys., 288 (2009), №. 3, 1007–1021.

A. Poltoratski, C. Remling, Approximation results for reflectionless Jacobi matrices, Int. Math. Res. Not., 16 (2011), 3575–3617.

P. Duren, A. Schuster, Bergman spaces. American Mathematical Society, Providence, RI, 2004. https://doi.org/10.1090/surv/100

W. Blaschke, Eine Erweiterung des Satzes von Vitali uber Folgen analytischer Funktionen, Berichte, Leipzig, 67 (1915), 194–200.

Yu. S. Trukhan, M. M. Sheremeta, On l-index boundedness of the Blaschke product, Mat. Stud. 19 (2003), №1, 106–112.

Yu. S. Trukhan, M. M. Sheremeta, On the boundedness of l-index of canonical product of zero genus and of Blaschke product, Mat. Stud. 29 (2008), №1, 45–51. (in Ukrainian)

B. Ja. Levin, Distribution of zeros of entire functions, Revised ed., Transl. Math. Monographs, 5, American Mathematical Society, Providence, R.I., 1980.

R. Hryniv, B. Melnyk, Ya. Mykytyuk, Inverse scattering for reflectionless Schrodinger operators with integrable potentials and generalized soliton solutions for the KdV equation, Ann. Henri Poincare, 22 (2021), 487–527. https: //doi.org/10.1007/s00023-020-01000-5

R. Young, An introduction to non-harmonic Fourier series, 2nd edition, Academic Press, 2001.

Published
2024-06-19
How to Cite
Sushchyk, N., & Lukivska, D. (2024). A uniqueness theorem for meromorphic functions. Matematychni Studii, 61(2), 219-224. https://doi.org/10.30970/ms.61.2.219-224
Section
Research Announcements