On certain classes of Dirichlet series with real coefficients absolute convergent in a half-plane
Abstract
For h>0, α∈[0,h) and μ∈R denote by SDh(μ,α) a class of absolutely convergent in the half-plane Π0={s:Res<0} Dirichlet series F(s)=esh+∑∞k=1fkexp{sλk} such that \smallskip\centerline{Re{(μ−1)F′(s)−μF″ for all s\in \Pi_0,} \smallskip\noi and let \Sigma D_h(\mu, \alpha) be a class of absolutely convergent in half-plane \Pi_0 Dirichlet series F(s)=e^{-sh}+\sum_{k=1}^{\infty}f_k\exp\{s\lambda_k\} such that \smallskip\centerline{\text{Re}\left\{\frac{(\mu-1)F'(s)+\mu F''(s)/h}{(\mu-1)F(s)+\mu F'(s)/h}\right\}<-\alpha for all s\in \Pi_0.} \smallskip\noi Then SD_h(0, \alpha) consists of pseudostarlike functions of order \alpha and SD_h(1, \alpha) consists of pseudoconvex functions of order \alpha. For functions from the classes SD_h(\mu, \alpha) and \Sigma D_h(\mu, \alpha), estimates for the coefficients and growth estimates are obtained. {In particular, it is proved the following statements: 1) In order that function F(s)=e^{sh}+\sum_{k=1}^{\infty}f_k\exp\{s\lambda_k\} belongs to SD_h(\mu, \alpha), it is sufficient, and in the case when f_k(\mu\lambda_k/h-\mu+1)\le 0 for all k\ge 1, it is necessary that} \smallskip\centerline{ \sum\limits_{k=1}^{\infty}\big|f_k\big(\frac{\mu\lambda_k}{h}-\mu+1\big)\big|(\lambda_k-\alpha)\le h-\alpha,} \noi {where h>0, \alpha\in [0, h) (Theorem 1).} \noi 2) {In order that function F(s)=e^{-sh}+\sum_{k=1}^{\infty}f_k\exp\{s\lambda_k\} belongs to \Sigma D_h(\mu, \alpha), it is sufficient, and in the case when f_k(\mu\lambda_k/h+\mu-1)\le 0 for all k\ge 1, it is necessary that \smallskip\centerline{\sum\limits_{k=1}^{\infty}\big|f_k\big(\frac{\mu\lambda_k}{h}+\mu-1\big)\big|(\lambda_k+\alpha)\le h-\alpha,} \noi where h>0, \alpha\in [0, h) (Theorem~2).} Neighborhoods of such functions are investigated. Ordinary Hadamard compositions and Hadamard compositions of the genus m were also studied.References
Holovata O.M., Mulyava O.M., Sheremeta M.M. Pseudostarlike, pseudoconvex and close-to-pseudoconvex Dirichlet series satisfying differential equations with exponential coefficients, Мath. Methods and Phys-Mech. Fields, 61 (2018), №1, 57–70.
Sheremeta M.M. Geometric properties of analytic solutions of differential equations, Lviv, Publ. I.E. Chyzhykov, 2019.
Sheremeta M.M. Pseudostarlike and pseudoconvex Dirichlet series of order alpha and type beta, Mat. Stud., 54 (2020), №1, 23–31. https://doi.org/10.30970/ms.54.1.23-31
Chen M-P., Irmak H., Srivastava H.M., Yu. C. Certain subclasses of meromorphically univalent functions with positive and negative coefficients, Pan Amer. Math. J., 6 (1996), №2, 65–72.
Goodman A.W. Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8 (1957), 598–601.
Ruscheweyh S. Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81 (1981), №4, 521–527.
Sheremeta M.M. Neighborhoods of Dirichlet series absolutely convergent in half-plane, Visn. Lviv Univ. Ser. Mech.-Math., 91 (2021), 63–71.
Sheremeta M.M. On certain subclass of Dirichlet series absolutely convergent in half-plane, Mat. Stud., 57 (2022), №1, 32–44. https://doi.org/10.30970/ms.57.1.32-44
Hadamard J. Theoreme sur le s´eries entieres, Acta math., 22 (1899), 55–63.
Hadamard J. La s´erie de Taylor et son prolongement analitique, Scientia Phys.-Math., (1901), №12,43–62.
Bieberbach L. Analytische Fortzetzung, Berlin, 1955.
Bandura A.I., Mulyava O.M., Sheremeta M.M. On Dirichlet series similar to Hadamard compositions, Carpathian Math. Publ., 15 (2023), №1, 180–195.
Sheremeta M.M., Skaskiv O.B. Pseudostarlike and pseudoconvex in a direction multiple Dirichlet series, Mat. Stud., 58 (2022), №2, 182–200. https://doi.org/10.30970/ms.58.2.182-200
Copyright (c) 2024 M. M. Sheremeta

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.