On certain classes of Dirichlet series with real coefficients absolute convergent in a half-plane
Abstract
For $h>0$, $\alpha\in [0,h)$ and $\mu\in {\mathbb R}$ denote by $SD_h(\mu, \alpha)$ a class of absolutely convergent in the half-plane $\Pi_0=\{s:\, \text{Re}\,s<0\}$ Dirichlet series $F(s)=e^{sh}+\sum_{k=1}^{\infty}f_k\exp\{s\lambda_k\}$ such that \smallskip\centerline{$\text{Re}\left\{\frac{(\mu-1)F'(s)-\mu F''(s)/h}{(\mu-1)F(s)-\mu F'(s)/h}\right\}>\alpha$ for all $s\in \Pi_0$,} \smallskip\noi and let $\Sigma D_h(\mu, \alpha)$ be a class of absolutely convergent in half-plane $\Pi_0$ Dirichlet series $F(s)=e^{-sh}+\sum_{k=1}^{\infty}f_k\exp\{s\lambda_k\}$ such that \smallskip\centerline{$\text{Re}\left\{\frac{(\mu-1)F'(s)+\mu F''(s)/h}{(\mu-1)F(s)+\mu F'(s)/h}\right\}<-\alpha$ for all $s\in \Pi_0$.} \smallskip\noi Then $SD_h(0, \alpha)$ consists of pseudostarlike functions of order $\alpha$ and $SD_h(1, \alpha)$ consists of pseudoconvex functions of order $\alpha$. For functions from the classes $SD_h(\mu, \alpha)$ and $\Sigma D_h(\mu, \alpha)$, estimates for the coefficients and growth estimates are obtained. {In particular, it is proved the following statements: 1) In order that function $F(s)=e^{sh}+\sum_{k=1}^{\infty}f_k\exp\{s\lambda_k\}$ belongs to $SD_h(\mu, \alpha)$, it is sufficient, and in the case when $f_k(\mu\lambda_k/h-\mu+1)\le 0$ for all $k\ge 1$, it is necessary that} \smallskip\centerline{$ \sum\limits_{k=1}^{\infty}\big|f_k\big(\frac{\mu\lambda_k}{h}-\mu+1\big)\big|(\lambda_k-\alpha)\le h-\alpha,$} \noi {where $h>0, \alpha\in [0, h)$ (Theorem 1).} \noi 2) {In order that function $F(s)=e^{-sh}+\sum_{k=1}^{\infty}f_k\exp\{s\lambda_k\}$ belongs to $\Sigma D_h(\mu, \alpha)$, it is sufficient, and in the case when $f_k(\mu\lambda_k/h+\mu-1)\le 0$ for all $k\ge 1$, it is necessary that \smallskip\centerline{$\sum\limits_{k=1}^{\infty}\big|f_k\big(\frac{\mu\lambda_k}{h}+\mu-1\big)\big|(\lambda_k+\alpha)\le h-\alpha,$} \noi where $h>0, \alpha\in [0, h)$ (Theorem~2).} Neighborhoods of such functions are investigated. Ordinary Hadamard compositions and Hadamard compositions of the genus $m$ were also studied.References
Holovata O.M., Mulyava O.M., Sheremeta M.M. Pseudostarlike, pseudoconvex and close-to-pseudoconvex Dirichlet series satisfying differential equations with exponential coefficients, Мath. Methods and Phys-Mech. Fields, 61 (2018), №1, 57–70.
Sheremeta M.M. Geometric properties of analytic solutions of differential equations, Lviv, Publ. I.E. Chyzhykov, 2019.
Sheremeta M.M. Pseudostarlike and pseudoconvex Dirichlet series of order $alpha$ and type $beta$, Mat. Stud., 54 (2020), №1, 23–31. https://doi.org/10.30970/ms.54.1.23-31
Chen M-P., Irmak H., Srivastava H.M., Yu. C. Certain subclasses of meromorphically univalent functions with positive and negative coefficients, Pan Amer. Math. J., 6 (1996), №2, 65–72.
Goodman A.W. Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8 (1957), 598–601.
Ruscheweyh S. Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81 (1981), №4, 521–527.
Sheremeta M.M. Neighborhoods of Dirichlet series absolutely convergent in half-plane, Visn. Lviv Univ. Ser. Mech.-Math., 91 (2021), 63–71.
Sheremeta M.M. On certain subclass of Dirichlet series absolutely convergent in half-plane, Mat. Stud., 57 (2022), №1, 32–44. https://doi.org/10.30970/ms.57.1.32-44
Hadamard J. Theoreme sur le s´eries entieres, Acta math., 22 (1899), 55–63.
Hadamard J. La s´erie de Taylor et son prolongement analitique, Scientia Phys.-Math., (1901), №12,43–62.
Bieberbach L. Analytische Fortzetzung, Berlin, 1955.
Bandura A.I., Mulyava O.M., Sheremeta M.M. On Dirichlet series similar to Hadamard compositions, Carpathian Math. Publ., 15 (2023), №1, 180–195.
Sheremeta M.M., Skaskiv O.B. Pseudostarlike and pseudoconvex in a direction multiple Dirichlet series, Mat. Stud., 58 (2022), №2, 182–200. https://doi.org/10.30970/ms.58.2.182-200
Copyright (c) 2024 M. M. Sheremeta
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.