Transformation operators for impedance Sturm–Liouville operators on the line
Abstract
In the Hilbert space H:=L2(R), we consider the impedance Sturm--Liouville operator T:H→H generated by the differential expression −pddx1p2ddxp, where the function p:R→R+ is of bounded variation on R and inf. Existence of the transformation operator for the operator T and its properties are studied.
In the paper, we suggest an efficient parametrization of the impedance function p in term of a real-valued bounded measure \mu\in \boldsymbol M via
p_\mu(x):= e^{\mu([x,\infty))}, x\in\mathbb{R}.
For a measure \mu\in \boldsymbol M, we establish existence of the transformation operator for the Sturm--Liouville operator T_\mu, which is constructed with the function p_\mu. Continuous dependence of the operator T_\mu on \mu is also proved. As a consequence, we deduce that the operator T_\mu is unitarily equivalent to the operator T_0:=-d^2/dx^2.
References
T. Kato, Perturbation theory of linear operators, Reprint of the 1980 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995.
V.A. Marchenko, Sturm–Liouville Operators and Their Applications, Naukova Dumka Publ., Kiev, 1977 (in Russian); Engl. transl.: Birkhauser Verlag, Basel, 1986.
F. Demontis, C. van der Mee, Scattering operators for matrix Zakharov-Shabat systems, Integral Equations and Operator Theory, 62 (2008), 517–540, https://doi:10.1007/s00020-008-1640-3.
S. Albeverio, R. Hryniv, Ya. Mykytyuk, Inverse scattering for impedance Schr¨odinger operators, I. Steplike impedans lattice, J. Math. Analysis and Appl., (2017), https://doi:10.1016/j.jmaa. 2017.07.068 (27pp.)
V.I. Bogachev,Weak convergence of measures, Amer. Math. Soc., Mathematical Surveys and Monographs, 234, (2018), 286 p.
I. Gohberg, S. Goldberg, M. Kaashoek, Classes of linear operators, V.2, Birkhauser Verlag, 1990, 465 p.
A.P. Robertson, W. Robertson, Topological vector spaces, Cambidge University Press, 1964.
C. Frayer, R.O. Hryniv, Ya.V. Mykytyuk, P.A. Perry Inverse scattering for Schr¨odinger operators with Miura potentials: I. Unique Riccati representatives and ZS-AKNS systems, Inverse Problems, 25 (2009), 115007 (25 p).
J. Bergh, J. Lofstrom, Interpolation spaces, An introduction, Grundlehren der Mathematischen Wissenschaften, 223, Springer–Verlag, Berlin–New York, 1976.
Copyright (c) 2023 M. Kazanivskiy, Ya. Mykytyuk, N. Sushchyk

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.