Compositions of Dirichlet series similar to the Hadamard compositions, and convergence classes |
|
Author |
info@nuft.edu.ua1, m_m_sheremeta@gmail.com2
1) Kyiv National University of Food Technologies; 2) Ivan Franko National University of Lviv
|
Abstract |
Let $(\lambda_n)$ be a positive sequence increasing to $+\infty$, $m\ge2$ and Dirichlet series
$F_j(s)=\sum\nolimits_{n=0}^{\infty}a_{n,j} \exp \{s\lambda_n\}$ $(j=1,2,\dots,m)$ have the abscissa $A\in (-\infty,\,+\infty]$ of absolute
convergence. We say that Dirichlet series $F(s)=\sum\nolimits_{n=0}^{\infty}a_{n} \exp \{s\lambda_n\}$ is similar to Hadamard compositions of of
Dirichlet series $F_j$ if $a_n=w(a_{n,1},\,a_{n,2})$ for all $n$, where $w\colon\mathbb{C}^2\to\mathbb{C}$ is some function. Clearly, if $w(a_{n,1},\,a_{n,2})=a_{n,1}a_{n,2}$ then $F$ is the Hadamard composition of the functions $F_1$ and $F_2$.
In the case $|a_n|\asymp\prod\nolimits_{j=1}^m |a_{n,j}|^{\omega_j}$ as $n\to +\infty$, where $\omega_j>0$ and
$\sum\nolimits_{j=1}^m \omega_j=1$, it is investigated the belonging of $F$ to some convergence class with respect of the belonging to this class of functions $F_j$.
|
Keywords |
Dirichlet series; convergence class; Hadamard composition
|
DOI |
doi:10.15330/ms.51.1.25-34
|
Reference |
1. Calys E.G. A note on the order and type of integral functions// Riv. Mat. Univer. Parma (2). – 1964. –
V.5. – P. 133–137.
2. Kulyavets’ L.V., Mulyava O.M. On the growth of a class of entire Dirichlet series// Carpathian Math. Publ. – 2014. – V.6, ¹2. – P. 300–309. (in Ukrainian) 3. Sheremeta M.N. Connection between the growth of the maximum of the modulus of an entire function and the moduli of the coefficients of its power series expansion// Izv. Vyssh. Uchebn. Zaved. Mat. – 1967, – ¹2 – P. 100–108. (in Russian) 4. Kulyavets’ L.V., Mulyava O.M. On the growth of a class of Dirichlet series absolutely convergent in half–plane// Carpathian Math. Publ. – 2017. – V.9, ¹1. – P. 63–71. 5. Mulyava O.M. On convergence classes of Dirichlet series// Ukr. Math. Journ. – 1999. – V.51, ¹1. – P. 1485–1494. (in Ukrainian) 6. Leont’ev A.F. Series of exponents. – M.: Nauka, 1956. – 536 p. (in Russian) 7. Mulyava O.M. On belonging of entire Dirichlet series to a modified generalized convergence class// Mat. Stud. – 2018. – V.50, ¹2. – P. 135–142. 8. Sheremeta M.M. On two classes of positive functions and the belonging to them of main characteristics of entire functions// Mat. Stud. – 2003. – V.19, ¹1. – P. 75–82. 9. Seneta E. Regularly varying functions, Lecture Notes in Mathematics, V.508. – Berlin: Springer-Verlag – 1976. 10. Gal’ Yu.M. On the growth of analytic functions given by Dirichlet series absolutely convergent in half– plane. – Drogobych, 1980. – 39 p. Manuscript dep. in VINITI 16.09.1980, no. 4080–80 Dep. (in Russian) 11. Mulyava O.M. Convergence classes in the theory of Dirichlet series// Dopov. Nats. Akad. Nauk. Ukr. – 1999. – ¹3. – P. 35–39. (in Ukrainian) |
Pages |
25-34
|
Volume |
51
|
Issue |
1
|
Year |
2019
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |