On $\varepsilon$-Friedrichs inequalities and its application |
|
Author |
oleh.buhrii@lnu.edu.ua, ol_buhrii@i.ua
Department of Mechanics and Mathematics,
Ivan Franko National University of Lviv,
Lviv, 79000, Ukraine
|
Abstract |
Let $n\in \mathbb{N}$
be a fixed number,
$\Omega$ be a bounded domain in $\mathbb{R}^n$,
$L^2(\Omega),\ L^{\infty}(\Omega)$ be the Lebesgue spaces,
$H^1(\Omega)$ and $H^1_0(\Omega)$ be the Sobolev spaces,
$$
\Pi_{\ell}(\alpha):= \mathop{\otimes}\limits_{k=1}^{n}(\alpha_k;\alpha_k+\ell),
\;\; \alpha=(\alpha_1,\ldots,\alpha_n)\in \mathbb{R}^n, \;\; \ell>0.
$$
There are proved the following assertions about $\varepsilon$-Friedrichs inequality (Theorem 1) in the space $H^1(\Omega)$ (Theorem 1) and $H^1_0(\Omega)$ (Theorem 2) : for every $\varepsilon>0$
there exist $N_{\varepsilon}\in \mathbb{N}$ and $\omega_{1},\ldots,\omega_{N_{\varepsilon}}\in L^{\infty}(\Omega)$
such that the inequality
$\displaystyle
\int\nolimits_{\Omega} |v(x)|^2 \; dx
\le \varepsilon \int\nolimits_{\Omega} |\nabla v(x)|^2 \; dx
+\sum\limits_{j=1}^{N_{\varepsilon}} \Bigl( \int\nolimits_{\Omega} v(x)\omega_j(x) \; dx \Bigr)^2
$
holds
for every $v\in H^1(\Omega)$ (Theorem 1) and $v\in H^1_0(\Omega)$ (Theorem 2),
where $\Omega$ is a bounded domain in $\mathbb{R}^n$ for which
there exist numbers $\ell>0$, $m\in \mathbb{N}$, and $\alpha^1,\ldots,\alpha^m\in \mathbb{R}^n$
satisfying the following conditions
1) $\overline{\Omega}=\overline{\Pi_{\ell}(\alpha^1)}\cup \ldots \cup \overline{\Pi_{\ell}(\alpha^m)}$;
2) for every $i,j\in \{1,\ldots,m\}$ with $i\not=j$ we obtain:
$\Pi_{\ell}(\alpha^i)\cap \Pi_{\ell}(\alpha^j)=\varnothing$.
|
Keywords |
the Friedrichs inequality; the Sobolev space
|
DOI |
doi:10.15330/ms.51.1.19-24
|
Reference |
1. Evans L.C., Partial differential equations, Graduate Studies in Mathematics, Amer. Math. Soc., Providence,
RI, 1998.
2. Gajewski H., Groger K., Zacharias K., Nonlinear operator equations and operator differential equations, Mir, Moscow, 1978; translated from: Akademie-Verlag, Berlin, 1974. 3. Saranen J., On an inequality of Friedrichs, Mathematica Scandinavica, 51 (1983), ¹2, 310-322. 4. Brenner S.C., Poincare-Friedrichs inequalities for piecewise H1 functions, SIAM J. Numer. Anal., 41 (2003), ¹1, 306-324. 5. Andreev V.K., On inequalities of the Friedrichs type for combined domains, J. Siberian Federal Univ. Series Math. Phys., 2 (2009), ¹2, 146–157. 6. Courant R., Hilbert D., Methods of mathematical physics, V.2, Mir, Moscow, 1965. 7. Ladyzhenskaya O.A., The mathematical theory of viscous incompressible flow, GIFML, Moscow, 1961; English translation (second English edition): Gordon and Breach Science Publ., New York, London, Paris, Montreux, Tokyo, Melbourne, 1987. |
Pages |
19-24
|
Volume |
51
|
Issue |
1
|
Year |
2019
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |