On $\varepsilon$-Friedrichs inequalities and its application

Author
O. M. Buhrii
Department of Mechanics and Mathematics, Ivan Franko National University of Lviv, Lviv, 79000, Ukraine
Abstract
Let $n\in \mathbb{N}$ be a fixed number, $\Omega$ be a bounded domain in $\mathbb{R}^n$, $L^2(\Omega),\ L^{\infty}(\Omega)$ be the Lebesgue spaces, $H^1(\Omega)$ and $H^1_0(\Omega)$ be the Sobolev spaces, $$ \Pi_{\ell}(\alpha):= \mathop{\otimes}\limits_{k=1}^{n}(\alpha_k;\alpha_k+\ell), \;\; \alpha=(\alpha_1,\ldots,\alpha_n)\in \mathbb{R}^n, \;\; \ell>0. $$ There are proved the following assertions about $\varepsilon$-Friedrichs inequality (Theorem 1) in the space $H^1(\Omega)$ (Theorem 1) and $H^1_0(\Omega)$ (Theorem 2) : for every $\varepsilon>0$ there exist $N_{\varepsilon}\in \mathbb{N}$ and $\omega_{1},\ldots,\omega_{N_{\varepsilon}}\in L^{\infty}(\Omega)$ such that the inequality $\displaystyle \int\nolimits_{\Omega} |v(x)|^2 \; dx \le \varepsilon \int\nolimits_{\Omega} |\nabla v(x)|^2 \; dx +\sum\limits_{j=1}^{N_{\varepsilon}} \Bigl( \int\nolimits_{\Omega} v(x)\omega_j(x) \; dx \Bigr)^2 $ holds for every $v\in H^1(\Omega)$ (Theorem 1) and $v\in H^1_0(\Omega)$ (Theorem 2), where $\Omega$ is a bounded domain in $\mathbb{R}^n$ for which there exist numbers $\ell>0$, $m\in \mathbb{N}$, and $\alpha^1,\ldots,\alpha^m\in \mathbb{R}^n$ satisfying the following conditions 1) $\overline{\Omega}=\overline{\Pi_{\ell}(\alpha^1)}\cup \ldots \cup \overline{\Pi_{\ell}(\alpha^m)}$; 2) for every $i,j\in \{1,\ldots,m\}$ with $i\not=j$ we obtain: $\Pi_{\ell}(\alpha^i)\cap \Pi_{\ell}(\alpha^j)=\varnothing$.
Keywords
the Friedrichs inequality; the Sobolev space
DOI
doi:10.15330/ms.51.1.19-24
Reference
1. Evans L.C., Partial differential equations, Graduate Studies in Mathematics, Amer. Math. Soc., Providence, RI, 1998.

2. Gajewski H., Groger K., Zacharias K., Nonlinear operator equations and operator differential equations, Mir, Moscow, 1978; translated from: Akademie-Verlag, Berlin, 1974.

3. Saranen J., On an inequality of Friedrichs, Mathematica Scandinavica, 51 (1983), ¹2, 310-322.

4. Brenner S.C., Poincare-Friedrichs inequalities for piecewise H1 functions, SIAM J. Numer. Anal., 41 (2003), ¹1, 306-324.

5. Andreev V.K., On inequalities of the Friedrichs type for combined domains, J. Siberian Federal Univ. Series Math. Phys., 2 (2009), ¹2, 146–157.

6. Courant R., Hilbert D., Methods of mathematical physics, V.2, Mir, Moscow, 1965.

7. Ladyzhenskaya O.A., The mathematical theory of viscous incompressible flow, GIFML, Moscow, 1961; English translation (second English edition): Gordon and Breach Science Publ., New York, London, Paris, Montreux, Tokyo, Melbourne, 1987.

Pages
19-24
Volume
51
Issue
1
Year
2019
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue