On a Banach space of Laplace-Stieltjes integrals |
|
Author |
m_m_sheremeta@gmail.com; mdobush19@gmail.com; andriykuryliak@gmail.com
Ivan Franko National University of Lviv, Lviv, Ukraine
|
Abstract |
Let $\Omega$ be class of positive unbounded functions
$\Phi$ on $(-\infty,\,+\infty)$ such that the derivative $\Phi'$ is positive, continuously differentiable
and increasing to $+\infty$ on $(-\infty,+\infty)$, $\varphi$ be the inverse function
to $\Phi'$, and $\Psi(x)=x-\frac{\Phi(x)}{\Phi'(x)}$ be the function
associated with $\Phi$ in the sense of Newton. Let $F$ be nonnegative
nondecreasing unbounded continuous on the right function on $[0,+\infty)$
and $f$ be a real-value function on $[0,+\infty)$. By $LS_{\Phi}(F)$ we denote
the class of integrals $ I(\sigma)=\int\nolimits_{0}^{\infty}f(x)e^{x\sigma}dF(x)$,
convergent for all $\sigma\in{\Bbb R}$ such that
$|f(x)|\exp\{x\Psi(\varphi(x))\}\to 0$ as $x\to+\infty$. Put
$\|I\|_{\Phi}:=\sup\{|f(x)|\exp\{x\Psi(\varphi(x))\}:\,x\ge 0\}$.
It is proved that if $\ln\,F(x)=o(x)$ as $x\to+\infty$ then
$(LS_{\Phi}(F),\,\|\cdot\|_{\Phi})$ is a Banach space and it is studied its
properties.
|
Keywords |
Laplace-Stieltjes integral; Dirichlet series; Banach space
|
DOI |
doi:10.15330/ms.48.2.143-149
|
Reference |
1. Sheremeta M.M., Asymptotical behaviour of Laplace-Stiltjes integrals, Lviv: VNTL Publishers, 2010,
211 p.
2. Trenogin V.A., Functional analysis. M.: Nauka, 1980, 495 p. (in Russian) 3. Juneja O.P., Srivastava B.L. On a Banach space of a class of Diriclet series // Indian J. pure appl. Math. – 1981. – V.12, ¹4. – P. 521–529. |
Pages |
143-149
|
Volume |
48
|
Issue |
2
|
Year |
2017
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |