On a Banach space of Laplace-Stieltjes integrals

Author
M. M. Sheremeta, M. S. Dobushovskyy, A. O. Kuryliak
Ivan Franko National University of Lviv, Lviv, Ukraine
Abstract
Let $\Omega$ be class of positive unbounded functions $\Phi$ on $(-\infty,\,+\infty)$ such that the derivative $\Phi'$ is positive, continuously differentiable and increasing to $+\infty$ on $(-\infty,+\infty)$, $\varphi$ be the inverse function to $\Phi'$, and $\Psi(x)=x-\frac{\Phi(x)}{\Phi'(x)}$ be the function associated with $\Phi$ in the sense of Newton. Let $F$ be nonnegative nondecreasing unbounded continuous on the right function on $[0,+\infty)$ and $f$ be a real-value function on $[0,+\infty)$. By $LS_{\Phi}(F)$ we denote the class of integrals $ I(\sigma)=\int\nolimits_{0}^{\infty}f(x)e^{x\sigma}dF(x)$, convergent for all $\sigma\in{\Bbb R}$ such that $|f(x)|\exp\{x\Psi(\varphi(x))\}\to 0$ as $x\to+\infty$. Put $\|I\|_{\Phi}:=\sup\{|f(x)|\exp\{x\Psi(\varphi(x))\}:\,x\ge 0\}$. It is proved that if $\ln\,F(x)=o(x)$ as $x\to+\infty$ then $(LS_{\Phi}(F),\,\|\cdot\|_{\Phi})$ is a Banach space and it is studied its properties.
Keywords
Laplace-Stieltjes integral; Dirichlet series; Banach space
DOI
doi:10.15330/ms.48.2.143-149
Reference
1. Sheremeta M.M., Asymptotical behaviour of Laplace-Stiltjes integrals, Lviv: VNTL Publishers, 2010, 211 p.

2. Trenogin V.A., Functional analysis. M.: Nauka, 1980, 495 p. (in Russian)

3. Juneja O.P., Srivastava B.L. On a Banach space of a class of Diriclet series // Indian J. pure appl. Math. – 1981. – V.12, ¹4. – P. 521–529.

Pages
143-149
Volume
48
Issue
2
Year
2017
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue