Processing math: 82%

On a Banach space of Laplace-Stieltjes integrals

Author
M. M. Sheremeta, M. S. Dobushovskyy, A. O. Kuryliak
Ivan Franko National University of Lviv, Lviv, Ukraine
Abstract
Let Ω be class of positive unbounded functions Φ on (,+) such that the derivative Φ is positive, continuously differentiable and increasing to + on (,+), φ be the inverse function to Φ, and Ψ(x)=xΦ(x)Φ(x) be the function associated with Φ in the sense of Newton. Let F be nonnegative nondecreasing unbounded continuous on the right function on [0,+) and f be a real-value function on [0,+). By LSΦ(F) we denote the class of integrals I(σ)=0f(x)exσdF(x), convergent for all σR such that |f(x)|exp{xΨ(φ(x))}0 as x+. Put . It is proved that if \ln\,F(x)=o(x) as x\to+\infty then (LS_{\Phi}(F),\,\|\cdot\|_{\Phi}) is a Banach space and it is studied its properties.
Keywords
Laplace-Stieltjes integral; Dirichlet series; Banach space
DOI
doi:10.15330/ms.48.2.143-149
Reference
1. Sheremeta M.M., Asymptotical behaviour of Laplace-Stiltjes integrals, Lviv: VNTL Publishers, 2010, 211 p.

2. Trenogin V.A., Functional analysis. M.: Nauka, 1980, 495 p. (in Russian)

3. Juneja O.P., Srivastava B.L. On a Banach space of a class of Diriclet series // Indian J. pure appl. Math. – 1981. – V.12, №4. – P. 521–529.

Pages
143-149
Volume
48
Issue
2
Year
2017
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue