Processing math: 100%

Ramsey-product subsets of a group

Author
T. Banakh, I. Protasov, K. Protasova
Ivan Franko National University of L'viv, Lviv, Ukraine; Faculty of Computer Science and Cybernetics, Kyiv University, Kyiv, Ukraine
Abstract
Given an infinite group G and a number vector m=(m1,,mk)Zk of finite length k, we say that a subset A of G is a Ramsey m-product set if every infinite subset XG contains distinct elements x1,,xkX such that xm1σ(1)xmkσ(k)A for any permutation σSk. We use these subsets to characterize combinatorially some algebraically defined subsets of the Stone-Cech compactification βG of G.
Keywords
Stone-Cech compactification; product of ultrafilters; Ramsey product subset
DOI
doi:10.15330/ms.47.2.145-149
Reference
1. V. Bergelson, N. Hindman, R. McCutcheon, Notions of size and combinatorial properties of quotient sets in semigroups, Topology Proc., 23 (1998), 23-60.

2. P. Erdos, R. Rado, Intersection theorems for systems of sets, J. London Math. Soc., 35 (1960), 85-90.

3. N. Hindman, A. Maleki, D. Strauss, Linear equations in the Stone-Cech compactification of N, Integers: Electronic Journal of Combinatorial Number Theory, 0 (2000), A02, 1-20.

4. N. Hindman, D. Strauss, Algebra in the Stone-Cech compactification, de Gruyter, Berlin, 1998.

5. I. Protasov, Equations in βG and resolvability of Abelian groups, Math. Notes, 6 (1999), 787-789.

6. I. Protasov, K. Protasova, On reccurence in G-spaces, Algebra Discrete Math., 23 (2017), no.2, 279-284.

7. O. Sipacheva, Large sets in Boolean and non-Boolean groups and topology, preprint (https://arxiv.org/abs/1709.02027).

Pages
145-149
Volume
47
Issue
2
Year
2017
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue