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Given an infinite group G and a number vector −→m = (m1, . . . ,mk) ∈ Zk of finite length k,
we say that a subset A of G is a Ramsey −→m-product set if every infinite subset X ⊂ G contains
distinct elements x1, . . . , xk ∈ X such that xm1

σ(1) . . . x
mk

σ(k) ∈ A for any permutation σ ∈ Sk.

We use these subsets to characterize combinatorially some algebraically defined subsets of the
Stone-Čech compactification βG of G.

All groups under consideration are supposed to be infinite; a countable set means a count-
ably infinite set.

Let G be a group and let −→m = (m1, . . . ,mk) ∈ Zk be a number vector of length k ∈ N.
We say that a subset A of a group G is a Ramsey −→m-product subset if every infinite subset
X of G contains pairwise distinct elements x1, . . . , xk ∈ X such that

xm1

σ(1) x
m2

σ(2) . . . x
mk

σ(k) ∈ A

for every permutation σ ∈ Sk.
Why Ramsey? The answer follows from the proof of (i) in

Proposition 1. For a group G and a number vector −→m = (m1, . . . ,mk) ∈ Zk the following
statements hold:

(i) a subset A of G is a Ramsey −→m-product subset if and only if for every infinite subset
X contains a countable subset Y such that ym1

1 . . . ymk
k ∈ A for any distinct elements

y1, . . . , yk ∈ Y ;

(ii) the family φ−→m of all Ramsey −→m-product subsets of G is a filter.

Proof. (i) The “if” part is trivial. To prove the “only if” part, assume that A is a Ramsey
−→m-product subset in G and X ⊂ G is an infinite set. Define the coloring χ : [X]k −→ {0, 1}
of the set [X]k = {K ⊂ X : |K| = k} by the rule: χ({x1, . . . , xk}) = 1 if and only if
xm1

σ(1) . . . x
mk

σ(k) ∈ A for every σ ∈ Sk.
By the classical Ramsey theorem, there exists a countable subset Y of X such that the

set [Y ]k is χ-monochrome. Since A is a Ramsey −→m-product subset, by the definition of χ,
there exists K ∈ [Y ]k such that χ(K) = 1, which implies that χ([Y ]k) = {1}.
(ii) We take A,B ∈ φ−→m and prove that A∩B ∈ φ−→m . For an infinite subset X, we choose Y
given by (i). For B and Y , we choose corresponding Z ⊂ Y and take distinct z1, . . . , zk ∈ Z.
Then zm1

σ(1) . . . z
mk

σ(k) ∈ A ∩B for any σ ∈ Sn.
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For some specific number vectors, Ramsey m⃗-product sets have been studied in the
literature. In particular, Ramsey (−1, 1)-product sets are exactly ∆ω sets from [6], Ramsey
(−1, 1)-product sets containing the unit of the group are exactly ω-fat sets of Sipacheva [7];
Ramsey (−1, 1)-product sets are similar to ∆∗-sets, studied in [1] (see [7, p.6]).

Now we present some examples and establish some topological properties of Ramsey
m⃗-product sets.

Proposition 2. For any totally bounded topological group G, any neighborhood U ⊂ G of
the unit e of G is a Ramsey m⃗-product set for any number vector m⃗ = (m1, . . . ,mk) ∈ Zk

with m1 + · · ·+mk = 0.

Proof. By the continuity of the group operation, there exists an open neighborhood V ⊂ G
of e such that V m1 · · ·V mk ⊂ U . Since the topological group G is totally bounded, we can
additionally assume that the neighborhood V is invariant in the sense that zV = V z for any
z ∈ G. By the total boundedness of G, there exists a finite set F ⊂ G such that G = FV .

To prove that U is a Ramsey m⃗-product set, take any infinite set A ⊂ G = FV . By the
Pigeonhole Principle, for some z ∈ F the set A∩zV is infinite. We claim that xm1

1 · · ·xmk
k ∈ U

for any points x1, . . . , xk ∈ A ∩ zV . Taking into account that the set V is invariant, we
conclude that

xm1
1 · · ·xmk

k ∈ (zV )m1 · · · (zV )mk = zm1+···+mkV m1 · · ·V mk ⊂ z0U = U.

For the vector m⃗ = (−1, 1), Proposition 2 can be complemented by the following propo-
sition proved in [6, Proposition 5]. We recall that a quasi-topological group is a group G
endowed with a topology such that for any a, b ∈ G and ε ∈ {−1, 1} the map G → G,
x 7→ axεb, is continuous.

Proposition 3. The closure Ā of any Ramsey (−1, 1)-product set A in a quasi-topological
group G is a neighborhood of the unit.

On the other hand, Ramsey m⃗-product sets have the following density property.

Proposition 4. Let m⃗ = (m1, . . . ,mk) ∈ Zk be a number vector and s = m1 + · · · + mk.
For any Ramsey m⃗-product subset A of a group G, the set {xs : x ∈ G} is contained in the
closure of A in any non-discrete group topology on G.

Proof. To derive a contradiction, assume that for some non-discrete group topology τ on G,
the closure Ā of A does not contain the power xs of some element x ∈ G. By the continuity
of the group operations, the element x has a neighborhood Ux ∈ τ such that U s

x ∩ A = ∅.
Since the topology τ is not discrete, the set Ux is infinite. Moreover, the choice of Ux ensures
that xm1

1 · · ·xmk
k /∈ A for any elements x1, . . . , xk ∈ Ux, which means that A is not Ramsey

m⃗-product.

A group G is defined to be s-divisible for s ∈ Z if for every g ∈ G there exists x ∈ G such
that xs = g.

Corollary 1. Let m⃗ = (m1, . . . ,mk) ∈ Zk be a number vector and G be an s-divisible group
for s = m1 + · · ·+mk. Then any Ramsey m⃗-product set A ⊂ G is dense in any non-discrete
group topology τ on G.
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Proposition 2 cannot be reversed as shown by the following example. We recall that a
subset S of a groupG is called syndetic ifG = FS for some finite subset F ⊂ G. A topological
group G is totally bounded if and only if each neighborhood of the unit is syndetic.

Example 1. Let G be the Boolean group of all finite subsets of Z, endowed with the group
operation of symmetric difference (of finite sets). The set

A = G \
{
{x, y} : x, y ∈ Z, 0 ̸= x− y ∈ {z3 : z ∈ Z}

}
has the following properties:

1. A is a Ramsey m⃗-product set for any vector m⃗ = (m1, . . . ,mk) ∈ (2Z + 1)k of length
k ≥ 2;

2. A does not contain the difference BB−1 of any syndetic set B ⊂ G;

3. A is not a neighborhood of zero in a totally bounded group topology of G.

Proof. 1. Given an infinite set B ⊂ G and k ≥ 2, we should find distinct elements
x1, . . . , xk ∈ B such that xm1

σ(1) . . . x
mk

σ(k) ∈ A for any permutation σ ∈ Sk. Taking into

account that the group G is Boolean and (m1, . . . ,mk) ∈ (2Z + 1)k, we conclude that
xm1

σ(1) . . . x
mk

σ(k) = x1 · · ·xk for any points x1, . . . , xk ∈ G and any permutation σ ∈ Sk. So, it
suffices to find distinct points x1, . . . , xk ∈ B such that x1 · · ·xk ∈ A.

For an element b ∈ B by |b| we denote the cardinality of b (as a finite subset of Z).
Two cases are possible: if the set {|b| : b ∈ B} is infinite, then we can fix any distinct
elements x1, . . . , xk−1 ∈ B and then choose an element xk ∈ B \ {x1, . . . , xk−1} such that
|xk| > 3+|x1 · · ·xi−1|. Then the set x := x1 · · ·xk has cardinality |x| ≥ |xk|−|x1 · · ·xk−1| ≥ 3
and hence x ∈ A.

If the set {|b| : b ∈ B} is finite, then by the classical Sunflower System Lemma [2] of Erdős
and Rado, there exist a set z ∈ G and a sequence x0, . . . , xk of pairwise distinct elements of
B such that xi ∩ xj = z ̸= xi for any distinct indices i, j ≤ k. Then the set x := x1 · · ·xk

contains the union
∪k

i=1(xk \ z) and hence has cardinality ≥ k. If k ≥ 3, then x ∈ A.
If k = 2, then we shall show that at least one of the sets x0x1, x0, x2 or x1x2 belongs

to A. Assuming that these three sets do not belong to A, we conclude that x0 = z ∪ {a},
x1 = z ∪ {b} and x2 = z ∪ {c} where a, b, c are distinct integer numbers such that a − b,
b − c and a − c belong to the set

{
n3 : n ∈ Z \ {0}

}
. Since (a − b) + (b − c) = a − c, this

contradicts the Fermat Theorem (saying that the equality x3 + y3 = z3 has no solutuions in
non-zero integer numbers).

2,3. The second statement is proved in Example 4 of [7] and the third statement trivially
follows from the second statement.

Now we endow G with the discrete topology and identify the Stone-Čech compactification
βG of G with the set of all ultrafilters on G. The family {Ā : A ⊆ G}, where Ā = {p ∈
βG : A ∈ p}, forms the base for the topology of βG. Given a filter φ on G, we denote
φ̄ =

∩
{Ā : A ∈ φ}, so φ defines the closed subset φ̄ of βG, and every non-empty closed

subset of βG can be defined in this way.
We use the standard extension [4, Section 4.1] of the multiplication on G to the semigroup

multiplication on βG. Given two ultrafilters p, q ∈ βG, we choose P ∈ p and, for each
x ∈ P , pick Qx ∈ q. Then

∪
x∈P xQx ∈ pq and the family of all these subsets forms a base

of the product pq. We note that the set G∗, G∗ = βG\G of all free ultrafilters is a closed
subsemigroup of βG.
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For t ∈ Z and q ∈ G∗ we denote by q∧t the ultrafilter with the base {xt : x ∈ Q}, Q ∈ q.
Warning: q∧t and qt are different things. Certainly, q∧t = qt only if t ∈ {−1, 0, 1}.

In notations of Proposition 1, we state

Proposition 5. An ultrafilter p ∈ G∗ belongs to the set cl{(q∧m1) . . . (q
∧mk) : q ∈ G∗} if

and only if for every P ∈ p there exists an injective sequence (xn)n∈ω in G such that

{xm1
n1

xm2
n2

· · · xmk
nk

: n1 < n2 < . . . < nk < ω} ⊆ P.

Proof. The “if” part follows directly from the definition of multiplication of the ultrafilters:
take an arbitrary q ∈ G∗ such that {xn : n ∈ ω} ∈ q.

The “only if” part is evident for k = 1. We prove it only for k = 2. We take q ∈ G∗ such
that P ∈ (q∧m1)(q

∧m2), and choose Q ∈ q, {Qx : Qx ∈ q, x ∈ Q} such that

xm1 · {ym2 : y ∈ Qx} ⊆ P

for each x ∈ Q. Then the desired sequence (xn)n∈ω can be chosen inductively from elements
of Q.

In the case k = 2, −→m = (−1, 1), the following theorem were proved in [6].

Theorem 1. For every group G and any number vector −→m = (m1, . . . ,mk) ∈ Zk, we have

φ−→m = cl{(q∧m1) · · · (q∧mk) : q ∈ G∗}.

Proof. We assume that there is p ∈ cl{(q∧m1) · · · (q∧mk) : q ∈ G∗} such that p /∈ φ−→m ,
choose P ∈ p such that G \ P ∈ φ−→m and let (xn)n∈ω be the sequence given for P by
Proposition 2. We put X = {xn : n ∈ ω} and note that every infinite subset Y of X
contradicts Proposition 1.

On the other hand, we take an arbitrary A ∈ φ−→m and an infinite X, use Proposition 1(i)
to choose corresponding Y and apply Proposition 4.

Question 1. Let G be a group and −→m = (m1, . . . ,mk) ∈ Zk, −→n = (n1, . . . , nl) ∈ Zl be two
number vectors. How one can detect whether

(1) cl{(q∧m1) · · · (q∧mk) : q ∈ G∗} ∩ cl{(r∧n1) · · · (r∧nl) : r ∈ G∗} ̸= ∅?

Evidently, (1) holds if the equation

(2) (x∧m1) · · · (x∧mk) = (y∧n1) · · · (y∧nl)

has solutions x, y ∈ G∗. In the case of Abelian groups (2) turns into the equality

(3) m1x + · · · + mkx = n1y + · · · + nly.

The equations (3) were studied in many paper with combinatorial, topological or purely
aesthetic motivations, we mention only [3], [5].
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