The Cauchy-Riemann equations for a class of (0,1)-forms in l2 |
|
Author |
National Polythecnic School of Oran, Algeria
talhaoui_abd@yahoo.fr
|
Abstract |
We study the local exactness of ¯∂ operator in the unit ball of
l2 for a particular
class of (0,1)-forms ω of the type ω(z)=∑iziωi(z)d¯zi, z=(zi) in l2.
We suppose each function ωi(z) of class C∞ in the closed unit ball of l2 of the form ωi(z)=∑kωik(zk),
where N=⋃Ik is a partition of N, (cardIk)≤+∞, and zk is the projection of z on CIk. We establish sufficient conditions for exactness of ω related to the expansion in Fourier series of the functions ωik.
|
Keywords |
¯∂ operator; Hilbert space; infinite dimension
|
DOI |
doi:10.15330/ms.46.2.171-177
|
Reference |
1. L. Lempert, The Dolbeault complex in infinite dimension, 1, J. Amer. Math. Soc, 11 (1998), 485–520.
2. L. Lempert, The Dolbeault complex in infinite dimension, 2, J. Amer. Math. Soc, 12 (1999), 775–793. 3. P. Mazet, Analytic sets in locally convex spaces, North Holland Math. Studies, Amsterdam, V.89, 1984. 4. R.A. Ryan, Holomorphic mappings in l1, Trans. Amer. Math. Soc., 302 (1987), 797–811. 5. A. Talhaoui, Exactness of some (0; 1)-forms in Hilbert spaces of infinite dimension, Math. Nachr., 8–9 (2011), 1172–1184. 6. A. Talhaoui, The Cauchy-Riemann equations in the unit ball of l2, Rend. Circ. Mat. Palermo, DOI 10. 1007/s12215-014-0151-0, 2014. |
Pages |
171-177
|
Volume |
46
|
Issue |
2
|
Year |
2016
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |