Processing math: 100%

The Cauchy-Riemann equations for a class of (0,1)-forms in l2

Author
A. Talhaoui
talhaoui_abd@yahoo.fr
Abstract
We study the local exactness of ¯ operator in the unit ball of l2 for a particular class of (0,1)-forms ω of the type ω(z)=iziωi(z)d¯zi, z=(zi) in l2. We suppose each function ωi(z) of class C in the closed unit ball of l2 of the form ωi(z)=kωik(zk), where N=Ik is a partition of N, (cardIk)+, and zk is the projection of z on CIk. We establish sufficient conditions for exactness of ω related to the expansion in Fourier series of the functions ωik.
Keywords
¯ operator; Hilbert space; infinite dimension
DOI
doi:10.15330/ms.46.2.171-177
Reference
1. L. Lempert, The Dolbeault complex in infinite dimension, 1, J. Amer. Math. Soc, 11 (1998), 485–520.

2. L. Lempert, The Dolbeault complex in infinite dimension, 2, J. Amer. Math. Soc, 12 (1999), 775–793.

3. P. Mazet, Analytic sets in locally convex spaces, North Holland Math. Studies, Amsterdam, V.89, 1984.

4. R.A. Ryan, Holomorphic mappings in l1, Trans. Amer. Math. Soc., 302 (1987), 797–811.

5. A. Talhaoui, Exactness of some (0; 1)-forms in Hilbert spaces of infinite dimension, Math. Nachr., 8–9 (2011), 1172–1184.

6. A. Talhaoui, The Cauchy-Riemann equations in the unit ball of l2, Rend. Circ. Mat. Palermo, DOI 10. 1007/s12215-014-0151-0, 2014.

Pages
171-177
Volume
46
Issue
2
Year
2016
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue