Orbits of smooth functions on 2-torus and their homotopy types |
|
Author |
maks@imath.kiev.ua, fb@imath.kiev.ua
Topology department
Institute of Mathematics of NAS of Ukraine
|
Abstract |
This result holds for a larger class of smooth functions $f\colon T^2\to\mathbb{R}$ having the following property: for every critical point $z$ of $f$ the germ of $f$ at $z$ is smoothly equivalent to a homogeneous polynomial $\mathbb{R}^2\to\mathbb{R}$ without multiple factors.
|
Keywords |
diffeomorphism; Morse function; homotopy type
|
DOI |
doi:10.15330/ms.44.1.67-83
|
Reference |
1. A.V. Bolsinov, A.T. Fomenko, Introduction to the topology of integrable hamiltonian systems, Nauka,
Moscow, 1997. (in Russian)
2. Yu.M. Burman, Morse theory for functions of two variables without critical points, Funct. Differ. Eq., 3 (1995), ¹1-2, 31-43. 3. Yu.M. Burman, Triangulations of surfaces with boundary and the homotopy principle for functions without critical points, Ann. Global Anal. Geom., 17 (1999), ¹3, 221-238. 4. C.J. Earle, J. Eells, The diffeomorphism group of a compact Riemann surface, Bull. Amer. Math. Soc., 73 (1967), 557-559. 5. A.T. Fomenko, A Morse theory for integrable Hamiltonian systems, Dokl. Akad. Nauk SSSR, 287 (1986), ¹5, 1071-1075. (in Russian) 6. A.T. Fomenko, Symplectic topology of completely integrable Hamiltonian systems, Uspekhi Mat. Nauk, 44 (1989), ¹1(265), 145-173. (in Russian) 7. A. Gramain, Le type d'homotopie du groupe des diffeomorphismes d'une surface compacte, Ann. Sci. Ecole Norm. Sup. (4), 6 (1973), 53-66. 8. A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. 9. K. Ikegami, O. Saeki, Cobordism of Morse maps and its applications to map germs, Math. Proc. Cambridge Philos. Soc., 147 (2009), ¹1, 235-254. 10. B. Kalmar, Cobordism group of Morse functions on unoriented surfaces, Kyushu J. Math., 59 (2005), ¹2, 351-363. 11. A.S. Kronrod, On functions of two variables, Uspehi Matem. Nauk (N.S.), 5 (1950), ¹1(35), 24-134. 12. E.A. Kudryavtseva, Realization of smooth functions on surfaces as height functions, Mat. Sb., 190 (1999), ¹3, 29-88. 13. E.A. Kudryavtseva, Connected components of spaces of Morse functions with fixed critical points, Vestnik Moskov. Univ. Ser. I Mat. Mekh., (2012), ¹1, 3-12. (in Russian) 14. E.A. Kudryavtseva, The topology of spaces of Morse functions on surfaces, Math. Notes, 92 (2012), ¹1-2, 219.236 (in Russian), Translation of Mat. Zametki, 92 (2012), ¹2, 241-261. 15. E.A. Kudryavtseva, On the homotopy type of spaces of Morse functions on surfaces, Mat. Sb., 204 (2013), ¹1, 79-118. 16. E.A. Kudryavtseva, D.A. Permyakov, Framed Morse functions on surfaces, Mat. Sb., 201 (2010), ¹4, 33-98. 17. E.V. Kulinich, On topologically equivalent Morse functions on surfaces, Methods Funct. Anal. Topology, 4 (1998), ¹1, 59-64. 18. S. Maksymenko, Path-components of Morse mappings spaces of surfaces, Comment. Math. Helv., 80 (2005), ¹3, 655-690. 19. S. Maksymenko, Components of spaces of Morse mappings, Some problems in contemporary mathematics, Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 25 (1998), 135-153. (in Russian) 20. S. Maksymenko, Smooth shifts along trajectories of flows, Topology Appl., 130 (2003), ¹2, 183-204. 21. S. Maksymenko, Homotopy types of stabilizers and orbits of Morse functions on surfaces, Ann. Global Anal. Geom., 29 (2006), ¹3, 241-285. 22. S. Maksymenko, Connected components of partition preserving diffeomorphisms, Methods Funct. Anal. Topology, 15 (2009), ¹3, 264-279. 23. S. Maksymenko, Deformations of circle-valued morse functions on surfaces, Ukrainian Math. Journal, 62 (2010), ¹10, 1360-1366. 24. S. Maksymenko, Functions on surfaces and incompressible subsurfaces, Methods Funct. Anal. Topology, 16 (2010), ¹2, 167-182. 25. S. Maksymenko, Functions with isolated singularities on surfaces, Geometry and topology of functions on manifolds, Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 7 (2010), ¹4, 7-66. 26. S. Maksymenko, Homotopy types of right stabilizers and orbits of smooth functions functions on surfaces, Ukr. Math. Journ., 64 (2012), ¹9, 1186-1203. (in Russian) 27. S. Maksymenko, Structure of fundamental groups of orbits of smooth functions on surfaces, 2014. 28. S. Maksymenko, B. Feshchenko, Homotopy properties of spaces of smooth functions on 2-torus, Ukr. Math. Journ., 66 (2014), ¹9, 1205-1212. (in Russian) 29. S. Maksymenko, B. Feshchenko, Smooth functions on 2-torus whose kronrod-reeb graph contains a cycle, Methods Funct. Anal. Topology, 21 (2015), ¹1, 22-40. 30. Ya. Masumoto, O. Saeki, A smooth function on a manifold with given Reeb graph, Kyushu J. Math., 65 (2011), ¹1, 75-84. 31. S.V. Matveev, A.T. Fomenko, V.V. Sharko, Round Morse functions and isoenergetic surfaces of integrable Hamiltonian systems, Mat. Sb. (N.S.), 135(177) (1988), ¹3, 325-345. 32. G. Reeb, Sur certaines proprietes topologiques des varietes feuilletees, Actualites Sci. Ind., ¹1183, Hermann & Cie., Paris, 1952, Publ. Inst. Math. Univ. Strasbourg 11, 5.89, 155-156. 33. V.V. Sharko, Functions on surfaces. I, Some problems in contemporary mathematics, Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 25 (1998), 408-434. (in Russian) 34. V.V. Sharko, Smooth and topological equivalence of functions on surfaces, Ukr. Mat. Zh., 55 (2003), ¹5, 687-700. 35. V.V. Sharko, About Kronrod-Reeb graph of a function on a manifold, Methods Funct. Anal. Topology, 12 (2006), ¹4, 389-396. |
Pages |
67-83
|
Volume |
44
|
Issue |
1
|
Year |
2015
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |